3>當(dāng)a≤0時.g’在[-1.1]上是增函數(shù). 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=lnx-ax,a∈R.
(1)當(dāng)x=1時,函數(shù)f(x)取得極值,求a的值;
(2)當(dāng)a>0時,求函數(shù)f(x)在區(qū)間[1,2]的最大值;
(3)當(dāng)a=-1時,關(guān)于x的方程2mf(x)=x2(m>0)有唯一實數(shù)解,求實數(shù)m的值.

查看答案和解析>>

設(shè)函數(shù)f(x)=lnx-ax,a∈R.
(1)當(dāng)x=1時,函數(shù)f(x)取得極值,求a的值;
(2)當(dāng)a>0時,求函數(shù)f(x)在區(qū)間[1,2]的最大值;
(3)當(dāng)a=-1時,關(guān)于x的方程2mf(x)=x2(m>0)有唯一實數(shù)解,求實數(shù)m的值.

查看答案和解析>>

設(shè)函數(shù)f(x)=lnx-ax,a∈R.
(1)當(dāng)x=1時,函數(shù)f(x)取得極值,求a的值;
(2)當(dāng)a>0時,求函數(shù)f(x)在區(qū)間[1,2]的最大值;
(3)當(dāng)a=-1時,關(guān)于x的方程2mf(x)=x2(m>0)有唯一實數(shù)解,求實數(shù)m的值.

查看答案和解析>>

已知函數(shù)f(x)=ax+lnx,a∈R.
(1)討論y=f(x)的單調(diào)性;(2)若定義在區(qū)間D上的函數(shù)y=g(x)對于區(qū)間D上的任意兩個值x1、x2總有不等式
1
2
[g(x1)+g(x2)]≥g(
x1+x2
2
)
成立,則稱函數(shù)y=g(x)為區(qū)間D上的“凹函數(shù)”.
試證明:當(dāng)a=-1時,g(x)=|f(x)|+
1
x
為“凹函數(shù)”.

查看答案和解析>>

已知函數(shù)f(x)=ex+ax,g(x)=exlnx(e 是自然對數(shù)的底數(shù))。
(1)若曲線y= f(x)在x=1處的切線也是拋物線y2=4(x-1)的切線,求a的值;
(2)若對于任意x∈R,f(x)>0恒成立,試確定實數(shù)a的取值范圍;
(3)當(dāng)a=-1時,是否存在x0∈(0,+∞),使曲線C:y= g(x)- f(x)在點x=x0處的切線斜率與f(x)在R上的最小值相等?若存在,求符合條件的x0的個數(shù);若不存在,請說明理由。

查看答案和解析>>


同步練習(xí)冊答案