3.若展開式的二項式系數之和為64.則展開式的常數項為 查看更多

 

題目列表(包括答案和解析)

展開式的二項式系數之和為64,則展開式的常數項為    。(用數字作答)

 

查看答案和解析>>

展開式的二項式系數之和為64,則展開式的常數項為       (     )

A10      B.20      C.30       D.120

 

查看答案和解析>>

展開式的二項式系數之和為64,則展開式的常數項為(  )

A.10       B.20        C.30          D.120

 

查看答案和解析>>

展開式的二項式系數之和為64,則展開式的常數項為     .(用數字作答)

查看答案和解析>>

展開式的二項式系數之和為64,則n=    ;展開式的常數項為   

查看答案和解析>>

選擇題: CABDA   BBADA   BB

4、原式

由條件可求得:    原式   故選D

5、由題得,則是公比為的等比數列,則,故選答案

6、由已知可得,直線的方程,

直線過兩個整點,(),即,故應選B

7、令,則,其值域為.由

對數函數的單調性可知:,且的最小值,

故選答案。

8、共有個四位數,其中個位數字是1,且恰好有兩個相同數字的四位數分為兩類:一類:“1”重復,有個;另一類;其他三個數字之一重復,有種。所以答案為:A

9、由題意可知滿足的軌跡是雙曲線的右支,根據“單曲線型直線”的定義可知,就是求哪條直線與雙曲線的右支有交點,故選D

10、選?梢宰C明D點和AB的中點E到P點和C點的距離相等,所以排除B和C選項。滿足的點在PC的中垂面上,PC的中垂面與ABCD的交線是直線,從而選A。

11、解:以的平分線所在直線為軸,建立坐標系,設,則、

所以

,故當且僅當,即為正三角形時,  故選B

12、,

,

的最小值為,故選答案。

二、填空題

13、。

14、利用正弦定理可將已知等式變?yōu)?sub>

,  

時,有最大值

15、。

16、。畫圖分析得在二面角內的那一部分的體積是球的體積的,所以。

三、解答題:

17、解:

(1)由

上是增函數,

可額可得

18、(1)如圖建立空間直角坐標系,則

分別為的重心,,

,即

(2)(i)平面,

,平面的法向量為,

平面的法向量為

,即二面角的大小為

(ii)設平面的法向量,

,由解得

,到平面的距離為

18、解:(I)抽取的球的標號可能為1,2,3,4

分別為0,1,2,3:分別為

因此的所有取值為0,1,2,3,4,5

時,可取最大值5,此時

(Ⅱ)當時,的所有取值為(1,2),此時;

時,的所有取值為(1,1),(1,3),(2,2),此時

時,的所有取值為(1,4),(2,1),(2,3),(3,2)此時

時,的所有取值為(2,4),(3,1),(3,3),(4,2)此時

時,的所有取值為(3,4),(4,1),(4,3),此時

的分布列為:

0

1

2

3

4

5

。

20解:(1)

   故

(Ⅱ)由(I)知

。當時,

時,

(Ⅲ),

①-②得

。

。

 

21、(I)解:依題設得橢圓的方程為

直線的方程分別為

如圖,設其中

滿足方程

上知。

所以,化簡得,

解得

(Ⅱ)解法一:根據點到直線的距離公式和①式知,點的距離分別為

,

,所以四邊形的面積為

,

即當時,上式取等號,所以的最大值為2

解法二:由題設,,

由①得

故四邊形的面積為+=

時,上式取等號,所以的最大值為

22、解:(I)由題設可得

函數上是增函數,

時,不等式恒成立。

時,的最大值為1,則實數的取值范圍是

(Ⅱ)當時,

時,,于是上單調遞減;

時,,于是上單調遞增。

綜上所述,當時,函數上的最小值為,當時,

函數上的最大值為

(Ⅲ)當時,由(Ⅰ)知上是增函數

對于任意的正整數,有,則

,。

成立,

 


同步練習冊答案