(2)求函數(shù)f(x)的最大值.并且求使f(x)取得最大的值的x的集合. 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)=
1
1+a•2bx
的定義域?yàn)镽,且
lim
n→∞
f(-n)=0(n∈N*)
(Ⅰ)求證:a>0,b<0;
(Ⅱ)若f(1)=
4
5
,且f(x)在[0,1]上的最小值為
1
2
,試求f(x)的解析式;
(Ⅲ)在(Ⅱ)的條件下記Sn=f(1)+f(2)+…+f(n)(n∈N),試比較Sn與n+
1
2n+1
+
1
2
(n∈N*)
的大小并證明你的結(jié)論.

查看答案和解析>>

函數(shù)f(x)=loga(3-ax)(a>0,a≠1)
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的定義域;
(2)是否存在實(shí)數(shù)a,使函數(shù)f(x)在[1,2]遞減,并且最大值為1,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

函數(shù)f(x)=a2x+2ax-1(a>0,且a≠1)
(1)若a=2,求y=f(x)的值域
(2)若y=f(x)在區(qū)間[-1,1]上有最大值14.求a的值;
(3)在(2)的前題下,若a>1,作出f(x)=a|x-1|的草圖,并通過(guò)圖象求出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí),0<f(x)<1,且對(duì)于任意的實(shí)數(shù)x、y∈R,都有f(x+y)=f(x)f(y).
(1)求f(0);
(2)試判斷函數(shù)f(x)在[0,+∞)上是否存在最小值,若存在,求該最小值;若不存在,說(shuō)明理由;
(3)設(shè)數(shù)列{an}各項(xiàng)都是正數(shù),且滿(mǎn)足a1=f(0),f(
a
2
n+1
-
a
2
n
)=
1
f(-an+1-an)
(n∈N*),又設(shè)bn=(
1
2
)an
,Sn=b1+b2+…+bnTn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,當(dāng)n≥2時(shí),試比較Sn與Tn的大小,并說(shuō)明理由.

查看答案和解析>>

函數(shù)f(x)=a2x+2ax-1(a>0,且a≠1)
(1)若a=2,求y=f(x)的值域
(2)若y=f(x)在區(qū)間[-1,1]上有最大值14.求a的值;
(3)在(2)的前題下,若a>1,作出f(x)=a|x-1|的草圖,并通過(guò)圖象求出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

 

一、選擇題(本大題共12個(gè)小題,每小題5分,共60分)

    1―5  CABDC   6―10  DCCBB   11―12AB

二、填空題:

13.9

14.

15.(1,0)

16.420

三、解答題:

17.解:(1)

   (2)由(1)知,

       

18.解: 記“第i個(gè)人過(guò)關(guān)”為事件Aii=1,2,3),依題意有

    。

   (1)設(shè)“恰好二人過(guò)關(guān)”為事件B,則有

    且彼此互斥。

于是

=

   (2)設(shè)“有人過(guò)關(guān)”事件G,“無(wú)人過(guò)關(guān)”事件互相獨(dú)立,

  

19.解法:1:(1)

   (2)過(guò)E作EF⊥PC,垂足為F,連結(jié)DF。             (8分)

由Rt△EFC∽

  • <li id="r4wva"><output id="r4wva"></output></li><li id="r4wva"><acronym id="r4wva"></acronym></li>
    <nobr id="r4wva"></nobr>

    <li id="r4wva"></li>

    解法2:(1)

       (2)設(shè)平面PCD的法向量為

            則

               解得   

    AC的法向量取為

    角A―PC―D的大小為

    20.(1)由已知得    

      是以a2為首項(xiàng),以

        (6分)

       (2)證明:

       

       (2)證明:由(1)知,

     

    21.解:(1)

    又直線(xiàn)

    (2)由(1)知,列表如下:

    x

    f

    +

    0

    0

    +

    fx

    學(xué)科網(wǎng)(Zxxk.Com)

    極大值

    學(xué)科網(wǎng)(Zxxk.Com)

    極小值

    學(xué)科網(wǎng)(Zxxk.Com)

     

      所以,函數(shù)fx)的單調(diào)增區(qū)間是

     

    22.解:(1)設(shè)直線(xiàn)l的方程為

    因?yàn)橹本(xiàn)l與橢圓交點(diǎn)在y軸右側(cè),

    所以  解得2

    l直線(xiàn)y截距的取值范圍為。          (4分)

       (2)①(Ⅰ)當(dāng)AB所在的直線(xiàn)斜率存在且不為零時(shí),

    設(shè)AB所在直線(xiàn)方程為

    解方程組           得

    所以

    設(shè)

    所以

    因?yàn)?i>l是AB的垂直平分線(xiàn),所以直線(xiàn)l的方程為

     

    因此

       又

       (Ⅱ)當(dāng)k=0或不存在時(shí),上式仍然成立。

    綜上所述,M的軌跡方程為(λ≠0)。  (9分)

    ②當(dāng)k存在且k≠0時(shí),由(1)得

      解得

    所以

     

    解法:(1)由于

    當(dāng)且僅當(dāng)4+5k2=5+4k2,即k≠±1時(shí)等號(hào)成立,

    此時(shí),

     

    當(dāng)

    當(dāng)k不存在時(shí),

     

    綜上所述,                      (14分)

    解法(2):

    因?yàn)?sub>

    當(dāng)且僅當(dāng)4+5k2=5+4k2,即k≠±1時(shí)等號(hào)成立,

    此時(shí)

    當(dāng)

    當(dāng)k不存在時(shí),

    綜上所述,

     

     

     

     


    同步練習(xí)冊(cè)答案
    <center id="r4wva"></center>