(1)求恰有二人過(guò)關(guān)的概率, 查看更多

 

題目列表(包括答案和解析)

某公司有男職員45名,女職員15名,按照分層抽樣的方法組建了一個(gè)4人的科研攻關(guān)小組.

(Ⅰ)求某職員被抽到的概率及科研攻關(guān)小組中男、女職員的人數(shù);

(Ⅱ)經(jīng)過(guò)一個(gè)月的學(xué)習(xí)、討論,這個(gè)科研攻關(guān)組決定選出兩名職員做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出1名職員做實(shí)驗(yàn),該職員做完后,再?gòu)男〗M內(nèi)剩下的職員中選一名做實(shí)驗(yàn),求選出的兩名職員中恰有一名女職員的概率;

(Ⅲ)試驗(yàn)結(jié)束后,第一次做試驗(yàn)的職員得到的試驗(yàn)數(shù)據(jù)為68,70,71,72,74,第二次做試驗(yàn)的職員得到的試驗(yàn)數(shù)據(jù)為69,70,70,72,74,請(qǐng)問(wèn)哪位職員的實(shí)驗(yàn)更穩(wěn)定?并說(shuō)明理由.

查看答案和解析>>

(本小題滿分12分)某公司有男職員45名,女職員15名,按照分層抽樣的方法組建了一個(gè)4人的科研攻關(guān)小組。

(1)求某職員被抽到的概率及科研攻關(guān)小組中男、女職員的人數(shù);

(2)經(jīng)過(guò)一個(gè)月的學(xué)習(xí)、討論,這個(gè)科研攻關(guān)組決定選出兩名職員做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出1名職員做實(shí)驗(yàn),該職員做完后,再?gòu)男〗M內(nèi)剩下的職員中選一名做實(shí)驗(yàn),求選出的兩名職員中恰有一名女職員的概率;

(3)實(shí)驗(yàn)結(jié)束后,第一次做實(shí)驗(yàn)的職員得到的實(shí)驗(yàn)數(shù)據(jù)為68,70,71,72,74,第二次做實(shí)驗(yàn)的職員得到的實(shí)驗(yàn)數(shù)據(jù)為69,70,70,72,74,請(qǐng)問(wèn)哪位職員的實(shí)驗(yàn)更穩(wěn)定?并說(shuō)明理由。

 

查看答案和解析>>

某校為了解高三年級(jí)不同性別的學(xué)生對(duì)體育課改上自習(xí)課的態(tài)度(肯定還是否定),進(jìn)行了如下的調(diào)查研究.全年級(jí)共有名學(xué)生,男女生人數(shù)之比為,現(xiàn)按分層抽樣方法抽取若干名學(xué)生,每人被抽到的概率均為

(1)求抽取的男學(xué)生人數(shù)和女學(xué)生人數(shù);

(2)通過(guò)對(duì)被抽取的學(xué)生的問(wèn)卷調(diào)查,得到如下列聯(lián)表:

 

否定

肯定

總計(jì)

男生

 

10

 

女生

30

 

 

總計(jì)

 

 

 

①完成列聯(lián)表;

②能否有的把握認(rèn)為態(tài)度與性別有關(guān)?

(3)若一班有名男生被抽到,其中人持否定態(tài)度,人持肯定態(tài)度;二班有名女生被抽到,其中人持否定態(tài)度,人持肯定態(tài)度.

現(xiàn)從這人中隨機(jī)抽取一男一女進(jìn)一步詢問(wèn)所持態(tài)度的原因,求其中恰有一人持肯定態(tài)度一人持否定態(tài)度的概率.

解答時(shí)可參考下面臨界值表:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

 

查看答案和解析>>

某校為了解高三年級(jí)不同性別的學(xué)生對(duì)體育課改上自習(xí)課的態(tài)度(肯定還是否定),進(jìn)行了如下的調(diào)查研究.全年級(jí)共有名學(xué)生,男女生人數(shù)之比為,現(xiàn)按分層抽樣方法抽取若干名學(xué)生,每人被抽到的概率均為
(1)求抽取的男學(xué)生人數(shù)和女學(xué)生人數(shù);
(2)通過(guò)對(duì)被抽取的學(xué)生的問(wèn)卷調(diào)查,得到如下列聯(lián)表:

 
否定
肯定
總計(jì)
男生
 
10
 
女生
30
 
 
總計(jì)
 
 
 
①完成列聯(lián)表;
②能否有的把握認(rèn)為態(tài)度與性別有關(guān)?
(3)若一班有名男生被抽到,其中人持否定態(tài)度,人持肯定態(tài)度;二班有名女生被抽到,其中人持否定態(tài)度,人持肯定態(tài)度.
現(xiàn)從這人中隨機(jī)抽取一男一女進(jìn)一步詢問(wèn)所持態(tài)度的原因,求其中恰有一人持肯定態(tài)度一人持否定態(tài)度的概率.
解答時(shí)可參考下面臨界值表:

0.10
0.05
0.025
0.010
0.005

2.706
3.841
5.024
6.635
7.879

查看答案和解析>>

某校為了解高三年級(jí)不同性別的學(xué)生對(duì)體育課改上自習(xí)課的態(tài)度(肯定還是否定),進(jìn)行了如下的調(diào)查研究.全年級(jí)共有名學(xué)生,男女生人數(shù)之比為,現(xiàn)按分層抽樣方法抽取若干名學(xué)生,每人被抽到的概率均為
(1)求抽取的男學(xué)生人數(shù)和女學(xué)生人數(shù);
(2)通過(guò)對(duì)被抽取的學(xué)生的問(wèn)卷調(diào)查,得到如下列聯(lián)表:
 
否定
肯定
總計(jì)
男生
 
10
 
女生
30
 
 
總計(jì)
 
 
 
①完成列聯(lián)表;
②能否有的把握認(rèn)為態(tài)度與性別有關(guān)?
(3)若一班有名男生被抽到,其中人持否定態(tài)度,人持肯定態(tài)度;二班有名女生被抽到,其中人持否定態(tài)度,人持肯定態(tài)度.
現(xiàn)從這人中隨機(jī)抽取一男一女進(jìn)一步詢問(wèn)所持態(tài)度的原因,求其中恰有一人持肯定態(tài)度一人持否定態(tài)度的概率.
解答時(shí)可參考下面臨界值表:

0.10
0.05
0.025
0.010
0.005

2.706
3.841
5.024
6.635
7.879

查看答案和解析>>

 

一、選擇題(本大題共12個(gè)小題,每小題5分,共60分)

    1―5  CABDC   6―10  DCCBB   11―12AB

二、填空題:

13.9

14.

15.(1,0)

16.420

三、解答題:

17.解:(1)

   (2)由(1)知,

       

18.解: 記“第i個(gè)人過(guò)關(guān)”為事件Aii=1,2,3),依題意有

   

   (1)設(shè)“恰好二人過(guò)關(guān)”為事件B,則有

    且彼此互斥。

于是

=

   (2)設(shè)“有人過(guò)關(guān)”事件G,“無(wú)人過(guò)關(guān)”事件互相獨(dú)立,

  

19.解法:1:(1)

   (2)過(guò)E作EF⊥PC,垂足為F,連結(jié)DF。             (8分)

<code id="q38rp"></code>
  • <li id="q38rp"><dl id="q38rp"><sup id="q38rp"></sup></dl></li>
    <li id="q38rp"><dl id="q38rp"></dl></li>

    由Rt△EFC∽

      <code id="q38rp"><delect id="q38rp"><noframes id="q38rp">

      解法2:(1)

         (2)設(shè)平面PCD的法向量為

              則

                 解得   

      AC的法向量取為

      角A―PC―D的大小為

      20.(1)由已知得    

        是以a2為首項(xiàng),以

          (6分)

         (2)證明:

         

         (2)證明:由(1)知,

       

      21.解:(1)

      又直線

      (2)由(1)知,列表如下:

      x

      f

      +

      0

      0

      +

      fx

      學(xué)科網(wǎng)(Zxxk.Com)

      極大值

      學(xué)科網(wǎng)(Zxxk.Com)

      極小值

      學(xué)科網(wǎng)(Zxxk.Com)

       

        所以,函數(shù)fx)的單調(diào)增區(qū)間是

       

      22.解:(1)設(shè)直線l的方程為

      因?yàn)橹本l與橢圓交點(diǎn)在y軸右側(cè),

      所以  解得2

      l直線y截距的取值范圍為。          (4分)

         (2)①(Ⅰ)當(dāng)AB所在的直線斜率存在且不為零時(shí),

      設(shè)AB所在直線方程為

      解方程組           得

      所以

      設(shè)

      所以

      因?yàn)?i>l是AB的垂直平分線,所以直線l的方程為

       

      因此

         又

         (Ⅱ)當(dāng)k=0或不存在時(shí),上式仍然成立。

      綜上所述,M的軌跡方程為(λ≠0)。  (9分)

      ②當(dāng)k存在且k≠0時(shí),由(1)得

        解得

      所以

       

      解法:(1)由于

      當(dāng)且僅當(dāng)4+5k2=5+4k2,即k≠±1時(shí)等號(hào)成立,

      此時(shí),

       

      當(dāng)

      當(dāng)k不存在時(shí),

       

      綜上所述,                      (14分)

      解法(2):

      因?yàn)?sub>

      當(dāng)且僅當(dāng)4+5k2=5+4k2,即k≠±1時(shí)等號(hào)成立,

      此時(shí)。

      當(dāng)

      當(dāng)k不存在時(shí),

      綜上所述,。

       

       

       

       


      同步練習(xí)冊(cè)答案