在中.由已知.由余弦定理. 查看更多

 

題目列表(包括答案和解析)

已知直三棱柱ABC-A1B1C1的三視圖如圖所示,且D是BC的中點(diǎn),
(Ⅰ)求證:A1B∥平面ADC1
(Ⅱ)求二面角C1-AD-C的余弦值;
(Ⅲ)試問線段A1B1上是否存在點(diǎn)E,使AE與DC1成60°角?若存在,確定E點(diǎn)位置,若不存在,說明理由。

查看答案和解析>>

已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且,M是PB的中點(diǎn).
(1)求AC與PB所成的角的余弦值;
(2)求二面角P-AC-M的余弦值;
(3)在棱PC上是否存在點(diǎn)N,使DN∥平面AMC,若存在,確定點(diǎn)N位置;若不存在,說明理由.

查看答案和解析>>

已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且,M是PB的中點(diǎn).
(1)求AC與PB所成的角的余弦值;
(2)求二面角P-AC-M的余弦值;
(3)在棱PC上是否存在點(diǎn)N,使DN∥平面AMC,若存在,確定點(diǎn)N位置;若不存在,說明理由.

查看答案和解析>>

已知向量=(),=(,),其中().函數(shù),其圖象的一條對(duì)稱軸為

(I)求函數(shù)的表達(dá)式及單調(diào)遞增區(qū)間;

(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,S為其面積,若=1,b=l,S△ABC=,求a的值.

【解析】第一問利用向量的數(shù)量積公式表示出,然后利用得到,從而得打解析式。第二問中,利用第一問的結(jié)論,表示出A,結(jié)合正弦面積公式和余弦定理求解a的值。

解:因?yàn)?/p>

由余弦定理得,……11分故

 

查看答案和解析>>

已知三棱柱ABC-A1B1C1三視圖如下圖所示,其中俯視圖是等腰直角三角形,正、側(cè)視圖都是正方形,D、E分別為棱CC1B1C1的中點(diǎn).

(1)求異面直線BDA1E所成角的余弦值;

(2)在棱AC上是否存在一點(diǎn)F,使EF⊥平面A1BD,若存在,確定點(diǎn)F的位置;若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案