題目列表(包括答案和解析)
下列長(zhǎng)度的三條線段,能組成三角形的是( )
A.1cm,2 cm,3cm B.2cm,3 cm,6 cm
C.4cm,6 cm,8cm D.5cm,6 cm,12cm
有下列長(zhǎng)度的三條線段,能組成三角形的是________.
A.1 cm、2 cm、3 cm
B.1 cm、4 cm、2 cm
C.2 cm、3 cm、4 cm
D.6 cm、2 cm、3 cm
下列長(zhǎng)度的三條線段,能組成三角形的是
A.2 cm、2 cm、5 cm
B.2 cm、4 cm、6 cm
C.4 cm、7 cm、9 cm
D.6 cm、6 cm、13 cm
下列長(zhǎng)度的三條線段,能組成三角形的是
A.1 cm、3 cm、4 cm
B.3 cm、3 cm、7 cm
C.4 cm、7 cm、10 cm
D.6 cm、6 cm、15 cm
下列長(zhǎng)度的三條線段,能組成三角形的是
A.1 cm、2 cm、3 cm
B.2 cm、3 cm、6 cm
C.4 cm、6 cm、8 cm
D.5 cm、6 cm、12 cm
一、選擇題(本題共32分,每小題4分)
1-5. BCCBB 6-8. DCA
二、填空題(本題共18分,每小題3分)
題號(hào)
9
10
11
12
答案
ab(a+1)(a-1)
真
A
60°
13
2n-1
三、解答題(共5道小題,每小題5分,共25分)
13、計(jì)算:-2cos30°+()-2-?1-?
解:原式=3-2×+4 -(-1) ………………………4分
= 3-+4-+1
= +5 ………………………………5分
14、求不等式組的整數(shù)解
解:由 x-2(x-1)≤3
得 x≥-1 ……………………………………………2分
由 x+1>x
得 x<2 ……………………………………………4分
∴不等式的整數(shù)解為-1、0、1 ……………………………5分
15、證明:在等腰梯形ABCD中
∵ AB∥CD AD=CB ,
∴ ∠DAB=∠CBA ……………1分
又 ∵∠CDA+∠DAB=180°
∠CBA+∠CBE=180°
∴∠CDA=∠CBE ………………2分
又∵ BE=DC …………………3分
∴△ADC≌△CBE …………4分
∴AC=CE ……………………5分
16、已知2x+y=0,求分式 .(x+y)的值.
解:.(x+y)=. (x+y)= ………………………2分
當(dāng) 2x+y=0時(shí) ,y=-2x, …………………………………4分
原式===-1 …………………………………5分
17、解:(1)設(shè)反比例函數(shù)解析式為y = (k≠0)
把M(1,3)點(diǎn)代入y= 解得k=3
∴反比例函數(shù)解析式為y= …………………………………2分
設(shè)一次函數(shù)解析式為y=kx+2 (k≠0)
把M(1,3)點(diǎn)代入y=kx+2 解得k=1
∴一次函數(shù)解析式為y=x+2 ………………………………4分
(2)x的取值范圍是 0<x< 1 …………………………5分
四、解答題(共2道小題,每小題5分,共10分)
18、 (1) AE⊥CF ………………………………1分
證明:連結(jié)AF
∵ AC=BC
又∵△ABC沿BC方向向右
平移BC長(zhǎng)的距離
∴AC=CE=EF=AF …
∴ 四邊形ACEF是菱形 ………………………………2分
∴ AE⊥CF
(2)作AD⊥BC于D …………………………………3分
∵tan∠ACB=
設(shè) AD=3K DC=4K
在Rt△ADC中 ,AC=10
∵ AD2+DC2=AC2
∴ K=2
∴ AD=6cm DC=8cm …………4分
∴ BD=2
在Rt△ADB中,根據(jù)勾股定理
∴ AB=2 cm …………………5分
19、 (1)證明:連結(jié)OC …………………1分
∵PD⊥AE于D
∴∠DCE+∠E=900
∵ AB=AE , OB=OC
∴∠CBA=∠E=∠BCO
又∵∠DCE=∠PCB
∴∠BCO+∠PCB=900
∴PD是⊙O的切線 ……………2分
(2)解:連結(jié)AC ………………3分
∵ AB=AE=5 AB是⊙O的直徑
BE=6
∴ AC⊥BE且EC=BC=3
∴ AC=4
又 ∵ ∠CBA=∠E ∠EDC=∠ACB=90°
∴△ EDC∽△BCA ………………4分
∴=
即=
∴ DC= ………………………………5分
五、解答題(本題滿分6分)
20、解:(1)本次調(diào)查的樣本是
所抽取的200名學(xué)生捐贈(zèng)圖書的情況; …………………………1分
(2)人均捐贈(zèng)圖書最多的是初二年級(jí); …………………………2分
(3)200×35%×5=350(冊(cè));
答:初三年級(jí)學(xué)生共捐贈(zèng)圖書350冊(cè) . …………………………4分
(4)1000×35%×4.5+1000×35%×5+1000×30%×6=5125(冊(cè))
答:估計(jì)全校共捐贈(zèng)圖書5125冊(cè). …………………………6分
六、解答題(共2道小題,第21題滿 分5分,第22題滿分4分)
21、(本題滿分5分)
解:設(shè)這列火車原來的速度為每小時(shí)x千米………1分
-= ……………………………2分
12x=900
x=75 ………………………………3分
經(jīng)檢驗(yàn) x=75 是原方程的解 ………………………4分
答:設(shè)這列火車原來的速度為每小時(shí)75千米.……5分
22、(本題滿分4分)
解:(1)b2-4ac=-12m+9≥0
∴ m≤ ………………………………1分
又 ∵ m2≠0
∴ m≤且m≠0 …………………………2分
(2)S=+==2m-3
∴ m= 即 ≤
∴S≤- …………………………3分
又 ∵ m≠0 即 ≠0
∴S≠-3
∴S≤-且S≠-3 ……………………4分
七、解答題(共2道小題,每小題7分,共14分)
23、(1)解:在等邊△ABC中
作AD⊥BC于D,交EF于H
∴ BD=DC=
又∵ tan60°=
∴ AD=a ………1分
∵ EF∥BC
∽
∴ =
=
∴ AH=x ………………………………2分
∴ S△AEF=AH×EF
S△AEF=x2=x2 ………………………………3分
(2) 解:①當(dāng)折疊后△AEF的頂點(diǎn)A落在四邊形BCFE內(nèi)或BC邊上時(shí)
y=x2 (0<x≤a ) …………………………4分
②當(dāng)折疊后△AEF的頂點(diǎn)A落在四邊形BCFE外點(diǎn)A′處時(shí),
A′F交BC于M, A′E交BC于N,連結(jié)AA′交EF于H,
交BC于D
∴ =
∴ =
又 ∵ AH= A′H
∴ =
∴ =
∴ =2 ………………………………5分
=
∴ S△A’MN=
∴ S四邊形MFEN=x2- …………………………………6分
∴ y=- (a<x<2a ) ……………………7分
24、解:(1)當(dāng)x=0和x=4時(shí),均有函數(shù)值y=3,
∴ 函數(shù)的對(duì)稱軸為x=2
∴頂點(diǎn)坐標(biāo)為(2,-1)
即對(duì)應(yīng)關(guān)系滿足y=(x-2)2-1,
∴ y=x2-4x+3 ……………………………1分
∴當(dāng)x=-1時(shí),y=8;x=1時(shí),y=0;x=3時(shí),y=0
x
……
-1
0
1
2
3
4
……
x2+bx+c
……
8
3
0
-1
0
3
……
…………………………2分
(2) 解:函數(shù)圖像與x軸交于A(1,0)、B(3,0);
與y軸交于點(diǎn)C(0,3)
設(shè)P點(diǎn)坐標(biāo)為(x,0),則PB=3-x ………3分
∴S△BCP=(3-x)
∵PE∥AC
∴△BEP∽△BCA 作EF⊥OB于F……4分
∴=
即=
∴ EF=(3-x) ……………………………………5分
∴S△BPE=BP?EF=(3-x)2
∵S△PEC= S△BCP-S△BPE …………………………………………6分
∴S△PEC =(3-x)-(3-x)2
S△PEC =-x2+3x-=-(x-2)2+
∴當(dāng)x=2時(shí),y最大=
∴ P點(diǎn)坐標(biāo)是(2,0) …………………………………7分
八、解答題(本題滿分8分)
25、(1) DE2=BD2+EC2 ……………………………………1分
證明:根據(jù)△AEC繞點(diǎn)A順時(shí)
針旋轉(zhuǎn)90°得到△ABE’
∴ △AEC≌△ABE’ ……………………2分
∴ BE’=EC, A E’=AE
∠C=∠AB E’ , ∠EAC=∠E’AB
在Rt△ABC中
∵ AB=AC
∴ ∠ABC=∠ACB=45°
∴ ∠ABC+∠AB E’=90°
即 ∠E’BD=90° ………………………3分
∴ E’B2+BD2= E’D2
又∵ ∠DAE=45°
∴ ∠BAD+∠EAC=45°
∴ ∠E’AB+∠BAD=45°
即 ∠E’AD=45°
∴ △A E’D≌△AED
∴ DE=D E’
∴ DE2=BD2+EC2 ……………………………4分
(2)關(guān)系式DE2=BD2+EC2仍然成立 ………5分
證明:將△ADB沿直線AD對(duì)折,
得△AFD,連FE
∴ △AFD≌△ABD ……………6分
∴AF=AB,FD=DB
∠FAD=∠BAD,∠AFD=∠ABD
又∵AB=AC,∴AF=AC
∵∠FAE=∠FAD+∠DAE=∠FAD+45°
∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)= 45°+∠DAB
∴ ∠FAE=∠EAC
又∵ AE=AE
∴△AFE≌△ACE
∴ FE=EC , ∠AFE=∠ACE=45°
∠AFD=∠ABD=180°-∠ABC=135°
∴ ∠DFE=∠AFD-∠AFE=135°-45°=90° …………………7分
∴在Rt△DFE中
DF2+FE2=DE2
即DE2=BD2+EC2 …………………………………………………8分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com