已知:如圖(1)在Rt△ABC中.∠BAC=90°.AB = AC.點D.E分別為線段BC上兩動點.若∠DAE=45°.探究線段BD.DE.EC三條線段之間的數(shù)量關系. 圖 (1)小明的思路是:把△AEC繞點A順時針旋轉90°.得到△ABE′.連結E′D. 查看更多

 

題目列表(包括答案和解析)

已知:如圖,在△ABC中,∠BAC=90°,AH⊥BC于H,以AB和AC為邊在Rt△ABC外作等邊△ABD和△ACE,試判斷△BDH與△AEH是否相似,并說明理由。

查看答案和解析>>

已知:如圖,在Rt△ABC中,∠BAC=90°,AB=AC,D是BC邊上一點,∠ADE=45°,AD=DE.求證:BD=EC.
精英家教網(wǎng)

查看答案和解析>>

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,點E在斜邊AB上,以AE為直徑的⊙O與BC邊相切于點D,連接AD.
(1)求證:AD是∠BAC的平分線;
(2)若AC=3,tanB=
34
,求⊙O的半徑.

查看答案和解析>>

已知:如圖,在Rt△ABC中,∠ABC=90°,AB=4,sin∠BAC=
35
,P是邊AC上一點,過點P作PD⊥AC,過點A作AD∥BC,交PD于點D,連接并延長DC,交邊AB的延長線于點E.設A、P兩點的距離為x,B、E兩點的距離為y.
(1)求BC的長度;
(2)求y關于x的函數(shù)解析式,并寫出它的定義域;
(3)當△ACD是等腰三角形時,求BE的長.

查看答案和解析>>

已知:如圖,在Rt△ABC中,∠C=90°,點E在斜邊AB上,以AE為直徑的⊙O與BC邊相切于點D,連接AD.
(1)求證:AD是∠BAC的平分線;
(2)若AC=3,tanB=數(shù)學公式,求⊙O的半徑.

查看答案和解析>>

一、選擇題(本題共32分,每小題4分)

1-5. BCCBB  6-8. DCA

二、填空題(本題共18分,每小題3分)

題號

9

10

11

    12

答案

ab(a+1)(a-1)

  A

  60°

13

2n-1

三、解答題(共5道小題,每小題5分,共25分)

13、計算:-2cos30°+()-2-?1-?

解:原式=3-2×+4 -(-1) ………………………4分

        = 3+4-+1

        = +5                 ………………………………5分

14、求不等式組的整數(shù)解

解:由 x-2(x-1)≤3 

    得 x≥-1             ……………………………………………2分

    由 x+1>x

    得  x<2               ……………………………………………4分

    ∴不等式的整數(shù)解為-1、0、1       ……………………………5分

 

15、證明:在等腰梯形ABCD

          ∵ ABCD     AD=CB  ,

          ∴ ∠DAB=∠CBA    ……………1分

       又 ∵∠CDA+∠DAB=180°

            ∠CBA+∠CBE=180°

          ∴∠CDA=∠CBE   ………………2分 

        又∵ BE=DC      …………………3分

          ∴△ADC≌△CBE    …………4分

          ∴AC=CE    ……………………5分

16、已知2x+y=0,求分式 .(x+y)的值.

解:.(x+y)=. (x+y)=    ………………………2分

    當 2x+y=0時 ,y=-2x,             …………………………………4分

     原式===-1             …………………………………5分

17、解:(1)設反比例函數(shù)解析式為y =  (k≠0)

       把M(1,3)點代入y= 解得k=3

       ∴反比例函數(shù)解析式為y=       …………………………………2分

        設一次函數(shù)解析式為y=kx+2 (k≠0)

        把M(1,3)點代入y=kx+2 解得k=1

        ∴一次函數(shù)解析式為y=x+2     ………………………………4分

     (2)x的取值范圍是  0<x< 1           …………………………5分

四、解答題(共2道小題,每小題5分,共10分)

18、  (1)   AECF                   ………………………………1分

   證明:連結AF

         ∵ AC=BC  

      又∵△ABC沿BC方向向右                             

         平移BC長的距離

        ∴AC=CE=EF=AF  …

        ∴ 四邊形ACEF是菱形   ………………………………2分

        ∴ AECF

      (2)作ADBCD       …………………………………3分

         ∵tan∠ACB=

         設 AD=3K  DC=4K    

          在Rt△ADC中 ,AC=10

        ∵ AD2+DC2=AC2

          ∴   K=2

          ∴  AD=6cm  DC=8cm  …………4分

          ∴  BD=2

         在Rt△ADB中,根據(jù)勾股定理

          ∴ AB=2 cm  …………………5分                                                                      

19、 (1)證明:連結OC    …………………1分

           ∵PDAED

           ∴∠DCE+∠E=900

           ∵ AB=AE  , OB=OC                    

            ∴∠CBA=∠E=∠BCO

          又∵∠DCE=∠PCB

            ∴∠BCO+∠PCB=900

            ∴PD是⊙O的切線  ……………2分

  (2)解:連結AC         ………………3分

     ∵ AB=AE=5  AB是⊙O的直徑

          BE=6

     ∴ ACBEEC=BC=3

     ∴ AC=4

     又 ∵ ∠CBA=∠E  ∠EDC=∠ACB=90°

      ∴△ EDC∽△BCA         ………………4分

     ∴=

       即=

     ∴ DC=                           ………………………………5分

五、解答題(本題滿分6分)

20、解:(1)本次調(diào)查的樣本是

        所抽取的200名學生捐贈圖書的情況;  …………………………1分

   (2)人均捐贈圖書最多的是初二年級;   …………………………2分

        (3)200×35%×5=350(冊);

        答:初三年級學生共捐贈圖書350冊 .    …………………………4分

        

 

 

 

 

 

 

   (4)1000×35%×4.5+1000×35%×5+1000×30%×6=5125(冊)

     答:估計全校共捐贈圖書5125冊.       …………………………6分

六、解答題(共2道小題,第21題滿 分5分,第22題滿分4分)

21、(本題滿分5分)

解:設這列火車原來的速度為每小時x千米………1分

          =         ……………………………2分

                 12x=900   

                   x=75              ………………………………3分

經(jīng)檢驗  x=75  是原方程的解      ………………………4分

答:設這列火車原來的速度為每小時75千米.……5分

22、(本題滿分4分)

解:(1)b2-4ac=-12m+9≥0  

          ∴ m                    ………………………………1分

        又 ∵ m2≠0

         ∴ mm≠0             …………………………2分

      (2)S===2m-3

            ∴ m=   即

            ∴S≤-                  …………………………3分

            又 ∵ m≠0     即 ≠0

              ∴S≠-3

              ∴S≤-S≠-3       ……………………4分

七、解答題(共2道小題,每小題7分,共14分)

23、(1)解:在等邊△ABC

       作ADBCD,交EFH      

       ∴  BD=DC=

        又∵  tan60°=

        ∴  AD=a    ………1分

        ∵  EFBC

       

       ∴  =

             =

        ∴ AH=x                    ………………………………2分

        ∴  S△AEF=AH×EF

               S△AEF=x2=x2      ………………………………3分

 (2) 解:①當折疊后△AEF的頂點A落在四邊形BCFE內(nèi)或BC邊上時

            y=x2   (0<x≤a )         …………………………4分

       

 

 

 

 

 

②當折疊后△AEF的頂點A落在四邊形BCFE外點A處時,

AFBCMAEBCN,連結AA′交EFH

BCD

       ∴  =

        ∴  =                       

        又 ∵  AH= A′H

        ∴  =

        ∴  =

        ∴  =2           ………………………………5分

          =

       ∴ S△AMN=

       ∴ S四邊形MFEN=x2-     …………………………………6分

       ∴ y=-   (ax2a )  ……………………7分

24、解:(1)當x=0和x=4時,均有函數(shù)值y=3,

       ∴ 函數(shù)的對稱軸為x=2

       ∴頂點坐標為(2,-1)  

       即對應關系滿足y=(x-2)2-1,

        ∴ y=x2-4x+3                      ……………………………1分

       ∴當x=-1時,y=8;x=1時,y=0;x=3時,y=0

x

……

 -1

0

1

2

3

4

……

x2+bx+c

……

  8

3

  0

-1

  0

3

……

…………………………2分

(2) 解:函數(shù)圖像與x軸交于A(1,0)、B(3,0);

      與y軸交于點C(0,3)

      設P點坐標為(x,0),則PB=3-x ………3分

      ∴S△BCP=(3-x)

      ∵PEAC  

      ∴△BEP∽△BCA   作EFOBF……4分

      ∴=    

      即=  

       ∴ EF=(3-x)          ……………………………………5分

       ∴S△BPE=BP?EF=(3-x2

       ∵S△PEC= S△BCPS△BPE     …………………………………………6分

      ∴S△PEC =(3-x)-(3-x2

                    S△PEC   =-x2+3x=-(x-2)2

      ∴當x=2時,y最大=

      ∴  P點坐標是(2,0)     …………………………………7分

八、解答題(本題滿分8分)

25、(1) DE2=BD2+EC2          ……………………………………1分

   證明:根據(jù)△AEC繞點A順時

       針旋轉90°得到△ABE            

     ∴  △AEC≌△ABE ……………………2分

     ∴  BE=EC, A E=AE

       ∠C=∠AB E , ∠EAC=∠E’AB

         在Rt△ABC

     ∵  AB=AC

     ∴  ∠ABC=∠ACB=45°

     ∴  ∠ABC+∠AB E=90°

即  ∠E’BD=90° ………………………3分

∴   E’B2BD2= E’D2

   又∵  ∠DAE=45°

     ∴  ∠BAD+∠EAC=45°

     ∴  ∠E’AB+∠BAD=45°

      即  ∠E’AD=45°

     ∴  △A E’D≌△AED

     ∴  DE=D E

     ∴  DE2=BD2+EC2  ……………………………4分

 

(2)關系式DE2=BD2+EC2仍然成立 ………5分

證明:將△ADB沿直線AD對折,

得△AFD,連FE

∴  △AFD≌△ABD     ……………6分                   

AF=AB,FD=DB

FAD=∠BAD,∠AFD=∠ABD

又∵AB=AC,∴AF=AC

∵∠FAE=∠FAD+∠DAE=∠FAD+45°

   ∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)= 45°+∠DAB

∴ ∠FAE=∠EAC

又∵  AE=AE

∴△AFE≌△ACE

FE=EC  , ∠AFE=∠ACE=45°

   ∠AFD=∠ABD=180°-∠ABC=135°

∴  ∠DFE=∠AFD-∠AFE=135°-45°=90°   …………………7分

∴在Rt△DFE中

DF2FE2=DE2

DE2=BD2+EC2    …………………………………………………8分


同步練習冊答案