(1)若,求向量的夾角; 查看更多

 

題目列表(包括答案和解析)

已知向量,的夾角為, 且, , 若,  求: (1) · ;                (2) .

 

查看答案和解析>>

(10分)已知向量, 的夾角為, 且, , 若, , 求

(1) · 

(2) .

[來(lái)源:.COM]

 

查看答案和解析>>

(10分)已知向量, 的夾角為, 且, , 若, , 求

(1)·;

(2).

 

查看答案和解析>>

已知向量,的夾角為, 且, , 若,  求: (1) · ;                (2) .

查看答案和解析>>

(10分)已知向量, 的夾角為, 且, , 若, , 求
(1)·;
(2).

查看答案和解析>>

             (執(zhí)信中學(xué)、中山紀(jì)念中學(xué)、深圳外語(yǔ))三校聯(lián)考      09.02

一.選擇題:

二.填空題:9.1;            10.15;          11.      

學(xué)科網(wǎng)(Zxxk.Com)

13.;          14.;          15..

 

 

 

 

 

 

 

 

 

 

 

 

三.解答題:

16.(1)==                2分

==                           4分

                     6分         

(2)==

==               9分

,得                10分

               11分

當(dāng), 即時(shí),                  12分

 

17.(1)由已知,的取值為 .                     2分                 

,

                     8分

7

8

9

10

的分布列為:

 

 

 

                                                          9分

 

(2)    11分      

        12分

18.(1)由.且           2分

,                      4分

中,令當(dāng)時(shí),T=,

兩式相減得,      6分

.                   8分

(2),                        9分

,,       10分

=2

=,               13分

                 14分     

19、(Ⅰ)在梯形中,,

學(xué)科網(wǎng)(Zxxk.Com)四邊形是等腰梯形,

     2分

平面平面,交線(xiàn)為

平面              4分

(Ⅱ)解法一、當(dāng)時(shí),平面,      5分

在梯形中,設(shè),連接,則          6分

,而,             7分

,四邊形是平行四邊形,             8分

平面,平面平面          9分

解法二:當(dāng)時(shí),平面,                                  

由(Ⅰ)知,以點(diǎn)為原點(diǎn),所在直線(xiàn)為坐標(biāo)軸,建立空間直角坐標(biāo)系,    5分

學(xué)科網(wǎng)(Zxxk.Com),,

,

平面

平面、共面,

 

 

設(shè).,

,,                     6分

從而要使得:成立,

,解得                  8分

當(dāng)時(shí),平面                 9分

學(xué)科網(wǎng)(Zxxk.Com)(Ⅲ)解法一、取中點(diǎn)中點(diǎn),連結(jié),

平面

,又,

是二面角的平面角.        6分

中,

,.           7分

.               8分

中,由余弦定理得,               9分

即二面角的平面角的余弦值為.

學(xué)科網(wǎng)(Zxxk.Com)

 

建立空間直角坐標(biāo)系,則,,

,,過(guò),

垂足為. 令,

,  

得,,,即   11分

,

二面角的大小就是向量與向量所夾的角.          12分

        13分        

               

即二面角的平面角的余弦值為.                    14分

 

20.(1)設(shè) (均不為),

,即                   2分

,即                  2分

 得  

動(dòng)點(diǎn)的軌跡的方程為              6分

(2)①由(1)得的軌跡的方程為,,

設(shè)直線(xiàn)的方程為,將其與的方程聯(lián)立,消去.         8分

設(shè)的坐標(biāo)分別為,則,           9分

      10分

②解法一:,  即

  又 .     可得        11分

故三角形的面積,                 12分

因?yàn)?sub>恒成立,所以只要解. 即可解得.      14分

 

解法二:,(注意到

又由①有,

三角形的面積(以下解法同解法一)

 

21.(1)函數(shù)的定義域?yàn)?sub>.               1分

;   2分                    

,       3分

則增區(qū)間為,減區(qū)間為.                        4分

(2)令,由(1)知上遞減,在上遞增,   6分

,且,           8分

時(shí), 的最大值為,故時(shí),不等式恒成立.   9分

(3)方程.記,則

.由;由.

所以上遞減;在上遞增.

,       10分

所以,當(dāng)時(shí),方程無(wú)解;

當(dāng)時(shí),方程有一個(gè)解;

當(dāng)時(shí),方程有兩個(gè)解;

當(dāng)時(shí),方程有一個(gè)解;

當(dāng)時(shí),方程無(wú)解.                                      13分

綜上所述,時(shí),方程無(wú)解;

時(shí),方程有唯一解;

時(shí),方程有兩個(gè)不等的解.               14分

 

 


同步練習(xí)冊(cè)答案