(1)求數(shù)列,的通項(xiàng)公式; 查看更多

 

題目列表(包括答案和解析)





⑴求數(shù)列的通項(xiàng)公式;
⑵設(shè),若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
⑶是否存在以為首項(xiàng),公比為的數(shù)列,使得數(shù)列中每一項(xiàng)都是數(shù)列中不同的項(xiàng),若存在,求出所有滿足條件的數(shù)列的通項(xiàng)公式;若不存在,說(shuō)明理由

查看答案和解析>>

求數(shù)列…的通項(xiàng)公式.

 

查看答案和解析>>

求數(shù)列…的通項(xiàng)公式.

 

查看答案和解析>>

求數(shù)列的通項(xiàng)公式:

1{an}中,a12an13an2;

(2)  {an}中,a12a25,且an23an12an0

 

查看答案和解析>>

求數(shù)列的通項(xiàng)公式,并求前n項(xiàng)和.

查看答案和解析>>

             (執(zhí)信中學(xué)、中山紀(jì)念中學(xué)、深圳外語(yǔ))三校聯(lián)考      09.02

一.選擇題:

二.填空題:9.1;            10.15;          11.      

學(xué)科網(wǎng)(Zxxk.Com)

13.;          14.;          15..

 

 

 

 

 

 

 

 

 

 

 

 

三.解答題:

16.(1)==                2分

==                           4分

                     6分         

(2)==

==               9分

,得                10分

               11分

當(dāng), 即時(shí),                  12分

 

17.(1)由已知,的取值為 .                     2分                 

,

                     8分

7

8

9

10

的分布列為:

 

 

 

                                                          9分

 

(2)    11分      

        12分

18.(1)由.且           2分

,                      4分

中,令當(dāng)時(shí),T=,

兩式相減得,      6分

.                   8分

(2),                        9分

,,       10分

=2

=,               13分

                 14分     

19、(Ⅰ)在梯形中,,

學(xué)科網(wǎng)(Zxxk.Com)四邊形是等腰梯形,

     2分

平面平面,交線為

平面              4分

(Ⅱ)解法一、當(dāng)時(shí),平面,      5分

在梯形中,設(shè),連接,則          6分

,而,             7分

,四邊形是平行四邊形,             8分

平面,平面平面          9分

解法二:當(dāng)時(shí),平面,                                  

由(Ⅰ)知,以點(diǎn)為原點(diǎn),所在直線為坐標(biāo)軸,建立空間直角坐標(biāo)系,    5分

學(xué)科網(wǎng)(Zxxk.Com),,,

,

平面,

平面共面,

  • <label id="kk51z"><legend id="kk51z"></legend></label>

     

     

    設(shè).,

    ,,                     6分

    從而要使得:成立,

    ,解得                  8分

    當(dāng)時(shí),平面                 9分

    學(xué)科網(wǎng)(Zxxk.Com)(Ⅲ)解法一、取中點(diǎn),中點(diǎn),連結(jié),,

    平面

    ,,又,

    是二面角的平面角.        6分

    中,

    ,.           7分

    .               8分

    中,由余弦定理得,               9分

    即二面角的平面角的余弦值為.

    學(xué)科網(wǎng)(Zxxk.Com)

      <rt id="kk51z"><small id="kk51z"><rt id="kk51z"></rt></small></rt>
      <rt id="kk51z"></rt>

         

        建立空間直角坐標(biāo)系,則,,

        ,過(guò),

        垂足為. 令,

        ,  

        得,,,即   11分

        ,

        二面角的大小就是向量與向量所夾的角.          12分

                13分        

                       

        即二面角的平面角的余弦值為.                    14分

         

        20.(1)設(shè) (均不為),

        ,即                   2分

        ,即                  2分

         得  

        動(dòng)點(diǎn)的軌跡的方程為              6分

        (2)①由(1)得的軌跡的方程為,,

        設(shè)直線的方程為,將其與的方程聯(lián)立,消去.         8分

        設(shè)的坐標(biāo)分別為,則,           9分

              10分

        ②解法一:,  即

          又 .     可得        11分

        故三角形的面積,                 12分

        因?yàn)?sub>恒成立,所以只要解. 即可解得.      14分

         

        解法二:,(注意到

        又由①有,,

        三角形的面積(以下解法同解法一)

         

        21.(1)函數(shù)的定義域?yàn)?sub>.               1分

        ;   2分                    

        ,       3分

        則增區(qū)間為,減區(qū)間為.                        4分

        (2)令,由(1)知上遞減,在上遞增,   6分

        ,且,           8分

        時(shí), 的最大值為,故時(shí),不等式恒成立.   9分

        (3)方程.記,則

        .由;由.

        所以上遞減;在上遞增.

        ,       10分

        所以,當(dāng)時(shí),方程無(wú)解;

        當(dāng)時(shí),方程有一個(gè)解;

        當(dāng)時(shí),方程有兩個(gè)解;

        當(dāng)時(shí),方程有一個(gè)解;

        當(dāng)時(shí),方程無(wú)解.                                      13分

        綜上所述,時(shí),方程無(wú)解;

        時(shí),方程有唯一解;

        時(shí),方程有兩個(gè)不等的解.               14分

         

         


        同步練習(xí)冊(cè)答案