21.設函數(shù). 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

        設函數(shù)試討論函數(shù)的單調(diào)性。

查看答案和解析>>

(本小題滿分14分)

設函數(shù),有。

(1)求的值;(2)求數(shù)列的通項公式;(3)是否存在正數(shù)均成立,若存在,求出k的最大值,并證明,否則說明理由。

查看答案和解析>>

(本小題滿分14分)設函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;(2)當時,不等式恒成立,求實數(shù)的取值范圍;(3)關于的方程上恰有兩個相異實根,求實數(shù)的取值范圍.

查看答案和解析>>

(本小題滿分14分)設函數(shù)上的導函數(shù)為上的導函數(shù)為,若在上,恒成立,則稱函數(shù)上為“凸函數(shù)”.已知

(1)若為區(qū)間上的“凸函數(shù)”,試確定實數(shù)的值;

(2)若當實數(shù)滿足時,函數(shù)上總為“凸函數(shù)”,求的最大值.

查看答案和解析>>

(本小題滿分14分)
設函數(shù)上的導函數(shù)為,上的導函數(shù)為,若在上,恒成立,則稱函數(shù)上為“凸函數(shù)”.已知
(1)若為區(qū)間上的“凸函數(shù)”,試確定實數(shù)的值;
(2)若當實數(shù)滿足時,函數(shù)上總為“凸函數(shù)”,求的最大值.

查看答案和解析>>

             (執(zhí)信中學、中山紀念中學、深圳外語)三校聯(lián)考      09.02

一.選擇題:

二.填空題:9.1;            10.15;          11.      

學科網(wǎng)(Zxxk.Com)

13.;          14.;          15..

 

 

 

 

 

 

 

 

 

 

 

 

三.解答題:

16.(1)==                2分

==                           4分

                     6分         

(2)==

==               9分

,得                10分

               11分

, 即時,                  12分

 

17.(1)由已知,的取值為 .                     2分                 

,

                     8分

7

8

9

10

的分布列為:

 

 

 

                                                          9分

 

(2)    11分      

        12分

18.(1)由.且           2分

,                      4分

中,令時,T=,

兩式相減得,      6分

.                   8分

(2),                        9分

,,       10分

=2

=,               13分

                 14分     

19、(Ⅰ)在梯形中,,

學科網(wǎng)(Zxxk.Com)四邊形是等腰梯形,

     2分

平面平面,交線為,

平面              4分

(Ⅱ)解法一、當時,平面,      5分

在梯形中,設,連接,則          6分

,而,             7分

,四邊形是平行四邊形,             8分

平面平面平面          9分

解法二:當時,平面,                                  

由(Ⅰ)知,以點為原點,所在直線為坐標軸,建立空間直角坐標系,    5分

學科網(wǎng)(Zxxk.Com),,,

平面,

平面共面,

 

 

.,

,,                     6分

從而要使得:成立,

,解得                  8分

時,平面                 9分

學科網(wǎng)(Zxxk.Com)(Ⅲ)解法一、取中點,中點,連結(jié),,

平面

,,又,

是二面角的平面角.        6分

中,

,.           7分

.               8分

中,由余弦定理得,               9分

即二面角的平面角的余弦值為.

學科網(wǎng)(Zxxk.Com)

 

建立空間直角坐標系,則,,

,,

垂足為. 令,

,  

得,,,即   11分

,

二面角的大小就是向量與向量所夾的角.          12分

        13分        

               

即二面角的平面角的余弦值為.                    14分

 

20.(1)設 (均不為),

,即                   2分

,即                  2分

 得  

動點的軌跡的方程為              6分

(2)①由(1)得的軌跡的方程為,,

設直線的方程為,將其與的方程聯(lián)立,消去.         8分

的坐標分別為,則,           9分

      10分

②解法一:,  即

  又 .     可得        11分

故三角形的面積,                 12分

因為恒成立,所以只要解. 即可解得.      14分

 

解法二:,,(注意到

又由①有,,

三角形的面積(以下解法同解法一)

 

21.(1)函數(shù)的定義域為.               1分

;   2分                    

,       3分

則增區(qū)間為,減區(qū)間為.                        4分

(2)令,由(1)知上遞減,在上遞增,   6分

,且,           8分

時, 的最大值為,故時,不等式恒成立.   9分

(3)方程.記,則

.由;由.

所以上遞減;在上遞增.

,       10分

所以,當時,方程無解;

時,方程有一個解;

時,方程有兩個解;

時,方程有一個解;

時,方程無解.                                      13分

綜上所述,時,方程無解;

時,方程有唯一解;

時,方程有兩個不等的解.               14分

 

 


同步練習冊答案