②函數(shù)=在上是增函數(shù),學(xué)科網(wǎng) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),給出下列四個命題:學(xué)科網(wǎng)

     ①若,則;   ②的最小正周期是;學(xué)科網(wǎng)

     ③在區(qū)間上是增函數(shù);  ④的圖象關(guān)于直線對稱學(xué)科網(wǎng)

     A.①②④     B.①③     C.②③     D.③④學(xué)科網(wǎng)

查看答案和解析>>

已知函數(shù),給出下列四個命題:

①若

的最小正周期是;

在區(qū)間上是增函數(shù);[來源:學(xué)科網(wǎng)]

的圖象關(guān)于直線對稱;

⑤當(dāng)時,的值域?yàn)?img width=84 height=53 src="http://thumb.zyjl.cn/pic1/1899/sx/194/39194.gif" >

其中正確的命題為                            (    )

       A.①②④     B.③④⑤     C.②③       D.③④

查看答案和解析>>

(本小題滿分12分)

       已知函數(shù)f x)=alnxxa為實(shí)常數(shù)).[來源:ZXXK][來源:學(xué)*科*網(wǎng)Z*X*X*K]

   (Ⅰ)若a=-2,求證:函數(shù)f x)在(1,+∞)上是增函數(shù);

   (Ⅱ)求函數(shù)fx)在[1,e]上的最小值及相應(yīng)的x值;

   (Ⅲ)若當(dāng)x∈[1,e]時,fx)≤(a+2)x恒成立,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

有以下四個命題:

的最小值是;   ②已知;

上是增函數(shù);[來源:學(xué)科網(wǎng)]

④定義在上的奇函數(shù).    其中真命題的是

查看答案和解析>>

有以下四個命題:

的最小值是;   ②已知;

上是增函數(shù);[來源:學(xué)科網(wǎng)]

④定義在上的奇函數(shù).    其中真命題的是

查看答案和解析>>

一、選擇題(每小題5分,共50分)

二、填空題(每小題4分,共28分)

三、解答題

18.解:(Ⅰ)由已有

                                    (4分)

 

                                            (6分)

 

(Ⅱ)由(1)                                 (8分)

所以              (10分)

                                                      (12分)

                                  (14分)

 

19.解:(Ⅰ)同學(xué)甲同學(xué)恰好投4次達(dá)標(biāo)的概率           (4分)

(Ⅱ)可取的值是

                                              (6分)

                                            (8分)

                                              (10分)

的分布列為

3

4

5

                                                                      (12分)

所以的數(shù)學(xué)期望為                   (14分)

 

20.解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC                (4分)

 

(Ⅱ)取CD的中點(diǎn)E,則AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE

建立如圖所示空間直角坐標(biāo)系,則

A(0,,0,0),P(0,0,),C(,0),D(,0)

,                  (6分)

易求為平面PAC的一個法向量.

為平面PDC的一個法向量                                  (9分)

∴cos

故二面角D-PC-A的正切值為2.  (11分)

(Ⅲ)設(shè),則

   ,

解得點(diǎn),即   (13分)

(不合題意舍去)或

所以當(dāng)的中點(diǎn)時,直線與平面所成角的正弦值為   (15分)

 

21.解:(Ⅰ)設(shè)直線的方程為:

,所以的方程為                     (4分)

點(diǎn)的坐標(biāo)為.

可求得拋物線的標(biāo)準(zhǔn)方程為.                                       (6分)

(Ⅱ)設(shè)直線的方程為,代入拋物線方程并整理得    (8分)     

設(shè)

設(shè),則

                                      (11分)

當(dāng)時上式是一個與無關(guān)的常數(shù).

所以存在定點(diǎn),相應(yīng)的常數(shù)是.                                     (14分)

 

22.解:(Ⅰ)當(dāng)               (2分)

上遞增,在上遞減

所以在0和2處分別達(dá)到極大和極小,由已知有

,因而的取值范圍是.                                   (4分)

(Ⅱ)當(dāng)時,

<dfn id="iylok"></dfn>
      1. 市一次模理數(shù)參答―3(共4頁)

                                                (7分)

        ,

        上遞減,在上遞增.

        從而上遞增

        因此                           (10分)

        (Ⅲ)假設(shè),即=

        ,

                                             (12分)

        ,(x)=0的兩根可得,

        從而有

        ≥2,這與<2矛盾.                                

        故直線與直線不可能垂直.                                               (15分)

         

         

         


        同步練習(xí)冊答案