此時平面. --------6分 查看更多

 

題目列表(包括答案和解析)

(本小題滿分10分)某食品廠定期購買面粉,已知該廠每天需用面粉6噸,每噸面粉的價格為1800元,面粉的保管等其他費用為平均每噸3元,購面粉每次需支付運費900元。

(1)求該廠多少天購買一次面粉,才能使平均每天所支付的總費用最少?

(2)若提供面粉的公司規(guī)定:當一次購買面粉不少于210噸時,其價格可享受九折優(yōu)惠,問該廠是否考慮利用此優(yōu)惠條件?請說明理由。

 

查看答案和解析>>

(本小題滿分13分)

由世界自然基金會發(fā)起的“地球1小時”活動,已發(fā)展成為最有影響力的環(huán);顒又,今年的參與人數(shù)再創(chuàng)新高.然而也有部分公眾對該活動的實際效果與負面影響提出了疑問.對此,某新聞媒體進行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:

支持

保留

不支持

20歲以下

800

450

200

20歲以上(含20歲)

100

150

300

(Ⅰ)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從“支持”態(tài)度的人中抽取了45人,求的值;

(Ⅱ)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取5人看成一個總體,從這5人中任意選取2人,求至少有人20歲以下的概率;

(Ⅲ)在接受調(diào)查的人中,有8人給這項活動打出的分數(shù)如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把這8個人打出的分數(shù)看作一個總體,從中任取個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過0.6的概率.

查看答案和解析>>

如圖,在豎直平面內(nèi)有一個“游戲滑道”,空白部分表示光滑滑道,黑色正方形表示障礙物,自上而下第一行有1個障礙物,第二行有2個障礙物,…,依此類推.一個半徑適當?shù)墓饣鶆蛐∏驈娜肟贏投入滑道,小球將自由下落,已知小球每次遇到正方形障礙物上頂點時,向左、右兩邊下落的概率都是.記小球遇到第n行第m個障礙物(從左至右)上頂點的概率為P(n,m).
(Ⅰ)求P(4,1),P(4,2)的值,并猜想P(n,m)的表達式(不必證明);
(Ⅱ)已知f(x)=,設小球遇到第6行第m個障礙物(從左至右)上頂點時,得到的分數(shù)為ξ=f(m),試求ξ的分布列及數(shù)學期望.

查看答案和解析>>

如圖,在豎直平面內(nèi)有一個“游戲滑道”,空白部分表示光滑滑道,黑色正方形表示障礙物,自上而下第一行有1個障礙物,第二行有2個障礙物,…,依此類推.一個半徑適當?shù)墓饣鶆蛐∏驈娜肟贏投入滑道,小球將自由下落,已知小球每次遇到正方形障礙物上頂點時,向左、右兩邊下落的概率都是.記小球遇到第n行第m個障礙物(從左至右)上頂點的概率為P(n,m).
(Ⅰ)求P(4,1),P(4,2)的值,并猜想P(n,m)的表達式(不必證明);
(Ⅱ)已知f(x)=,設小球遇到第6行第m個障礙物(從左至右)上頂點時,得到的分數(shù)為ξ=f(m),試求ξ的分布列及數(shù)學期望.

查看答案和解析>>

附加題:(選做題:在下面A、B、C、D四個小題中只能選做兩題)
A.選修4-1:幾何證明選講
如圖,已知AB、CD是圓O的兩條弦,且AB是線段CD的垂直平分線,
已知AB=6,CD=2
5
,求線段AC的長度.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值λ1=1及對應的一個特征向量e1=
1
1
和特征值λ2=2及對應的一個特征向量e2=
1
0
,試求矩陣A.
C.選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,已知曲線C的參數(shù)方程是
y=sinθ+1
x=cosθ
(θ是參數(shù)),若以O為極點,x軸的正半軸為極軸,取與直角坐標系中相同的單位長度,建立極坐標系,求曲線C的極坐標方程.
D.選修4-5:不等式選講
已知關于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)當a=1時,求此不等式的解集;
(2)若此不等式的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>


同步練習冊答案