∵∥ ∴x=0即x=-2y ①---------------------------------------------------------------8分 查看更多

 

題目列表(包括答案和解析)

換元法是把一個(gè)比較復(fù)雜的數(shù)學(xué)式子的一部分看成是一個(gè)整體,用另一個(gè)字母代替這一部分(即換元).換元法的好處是能使式子得到簡(jiǎn)化,各項(xiàng)的關(guān)系容易看清,便于解決問(wèn)題.此方法充分體現(xiàn)了整體的數(shù)學(xué)思想.例如:用換元法解分式方程
2x-1
x
-
x
2x-1
=2
時(shí),如果設(shè)
2x-1
x
=y
,并將原方程化為關(guān)于y的整式方程,那么這個(gè)整式方程是y2-2y-1=0,然后在解出y1和y2,再將y1和y2替換成
2x-1
x
=y1
2x-1
x
=y2
,即可解出x1和x2.請(qǐng)用換元法解方程:x2-
12
x2-2x
=2x-1

查看答案和解析>>

換元法是把一個(gè)比較復(fù)雜的數(shù)學(xué)式子的一部分看成是一個(gè)整體,用另一個(gè)字母代替這一部分(即換元).換元法的好處是能使式子得到簡(jiǎn)化,各項(xiàng)的關(guān)系容易看清,便于解決問(wèn)題.此方法充分體現(xiàn)了整體的數(shù)學(xué)思想.例如:用換元法解分式方程數(shù)學(xué)公式時(shí),如果設(shè)數(shù)學(xué)公式,并將原方程化為關(guān)于y的整式方程,那么這個(gè)整式方程是y2-2y-1=0,然后在解出y1和y2,再將y1和y2替換成數(shù)學(xué)公式數(shù)學(xué)公式,即可解出x1和x2.請(qǐng)用換元法解方程:數(shù)學(xué)公式

查看答案和解析>>

換元法是把一個(gè)比較復(fù)雜的數(shù)學(xué)式子的一部分看成是一個(gè)整體,用另一個(gè)字母代替這一部分(即換元).換元法的好處是能使式子得到簡(jiǎn)化,各項(xiàng)的關(guān)系容易看清,便于解決問(wèn)題.此方法充分體現(xiàn)了整體的數(shù)學(xué)思想.例如:用換元法解分式方程時(shí),如果設(shè),并將原方程化為關(guān)于y的整式方程,那么這個(gè)整式方程是y2-2y-1=0,然后在解出y1和y2,再將y1和y2替換成,即可解出x1和x2.請(qǐng)用換元法解方程:

查看答案和解析>>

換元法是把一個(gè)比較復(fù)雜的數(shù)學(xué)式子的一部分看成是一個(gè)整體,用另一個(gè)字母代替這一部分(即換元).換元法的好處是能使式子得到簡(jiǎn)化,各項(xiàng)的關(guān)系容易看清,便于解決問(wèn)題.此方法充分體現(xiàn)了整體的數(shù)學(xué)思想.例如:用換元法解分式方程時(shí),如果設(shè),并將原方程化為關(guān)于y的整式方程,那么這個(gè)整式方程是y2-2y-1=0,然后在解出y1和y2,再將y1和y2替換成,即可解出x1和x2.請(qǐng)用換元法解方程:

查看答案和解析>>

在日常生活中如取款、上網(wǎng)等都需要密碼. 有一種用 “因式分解” 法產(chǎn)生的密碼, 方便記憶. 原理是: 如對(duì)于多項(xiàng)式x4-y4, 因式分解的結(jié)果是(x-y)(x+y)(x2+y2). 若取x=9,y=9時(shí), 則各個(gè)因式的值是: (x-y)=0, (x+y)=18, (x2+y2)=162, 于是就可以把 “018162” 作為一個(gè)六位數(shù)的密碼. 對(duì)于多項(xiàng)式25(x+2y)2-4(x-y)2, 取x=10,y=10時(shí), 用上述方法產(chǎn)生的密碼是: _________________________(寫出一個(gè)即可)

查看答案和解析>>


同步練習(xí)冊(cè)答案