(I)求四棱錐的體積, 查看更多

 

題目列表(包括答案和解析)

如圖(1),三棱錐P′-A′BC′中,P′A′⊥平面A′BC′,△A′BC′是正三角形,E是P′C′的中點:如圖(2),三棱錐P-ACD中,PA⊥平面ACD,∠ACD=90°,∠DAC=30°,若△P′A′C′≌△PAC,現(xiàn)將兩個三棱錐拼接成四棱錐P-ABCD,使得面P′A′C′與面PAC完全重合,在四棱錐P-ABCD中,解答以下問題:

(I)求證:CD⊥AE;
(Ⅱ)當PA=AC=
3
時,求棱錐E-ABCD的體積.

查看答案和解析>>

如圖,在四棱錐S-ABCD中,∠ADB=90°,AD=BD=1,SA⊥平面ABCD,∠ASB=30°,E、F分別是SD、SC上的動點,M、N分別是SB、SC上的動點,且
SE
SD
=
SF
SC
=λ,
SM
SB
=
SN
SC

(I)當λ,μ有何關(guān)系時,ME⊥平面SAD?并證明你的結(jié)論;
(II)在(I)的條件下且μ=
1
2
時,求三棱錐S-AME的體積.

查看答案和解析>>

如圖(1),三棱錐P′-A′BC′中,P′A′⊥平面A′BC′,△A′BC′是正三角形,E是P′C′的中點:如圖(2),三棱錐P-ACD中,PA⊥平面ACD,∠ACD=90°,∠DAC=30°,若△P′A′C′≌△PAC,現(xiàn)將兩個三棱錐拼接成四棱錐P-ABCD,使得面P′A′C′與面PAC完全重合,在四棱錐P-ABCD中,解答以下問題:

精英家教網(wǎng)

(I)求證:CD⊥AE;
(Ⅱ)當PA=AC=
3
時,求棱錐E-ABCD的體積.

查看答案和解析>>

如圖(1),三棱錐P′-A′BC′中,P′A′⊥平面A′BC′,△A′BC′是正三角形,E是P′C′的中點:如圖(2),三棱錐P-ACD中,PA⊥平面ACD,∠ACD=90°,∠DAC=30°,若△P′A′C′≌△PAC,現(xiàn)將兩個三棱錐拼接成四棱錐P-ABCD,使得面P′A′C′與面PAC完全重合,在四棱錐P-ABCD中,解答以下問題:

(I)求證:CD⊥AE;
(Ⅱ)當PA=AC=時,求棱錐E-ABCD的體積.

查看答案和解析>>

(文)如圖所示,在四棱錐P-ABCD中,底面ABCD為正方形,PA⊥平面ABCD,點 E在線段PC上,設(shè)
PEEC
,PA=AB.
(I) 證明:BD⊥PC;
(Ⅱ)當λ=1時,平面BDE分此棱錐為兩部分,求這兩部分的體積比.

查看答案和解析>>

一、選擇題(每小題5分,共60分)

   BDACC   ACDDB  AA

二、填空題(每小題4分,共16分)

  (13) ;   (14);   (15);   (16)②③。

三、解答題(共74分)

(17)解:(I)由于弦定理,

代入。

                                           …………………………………4分

。

      ……………………………………6分

                              ……………………………………7分

                   …………………………………8分

(Ⅱ),                     ………………………………10分

 由,得。             ………………………………11分

所以,當時,取得最小值為0,   ………………………………12分

(18)解:(I)由已知得

              故

              即

              故數(shù)列為等比數(shù)列,且

              又當時,

                                   ………………………………6分

              而亦適合上式

                                …………………………………8分

         (Ⅱ)

               所以

                     

                                      ………………………………12分

(19)解:(I)由該四棱錐的三視圖可知,該四棱錐的底面的邊長為1的正方形,側(cè)棱,

                                                   ……………………………4分

        (Ⅱ)連結(jié),則的中點,

             的中點,

             ,

             又平面內(nèi),

             平面                   ………………8分

        (Ⅲ)不論點在何位置,都有   ………………9分

             證明:連結(jié)是正方形,

                  

                  

                   又,

                  

                           …………12分

(20分)解:

(I)利用樹形圖我們可以列出連續(xù)抽取2張卡片的所有可能結(jié)果(如下圖所示)。

            由上圖可以看出,實驗的所有可能結(jié)果數(shù)為20.因為每次都隨機抽取,因次

這20種結(jié)果出現(xiàn)的可能性是相同的,實驗屬于古典概型。 ……………2分用

表示事“連續(xù)抽取2人都是女生”,則互斥,并且表示事

件“連續(xù)抽取2張卡片,取出的2人不全是男生”,由列出的所有可能結(jié)果可

以看出,的結(jié)果有12種,的結(jié)果有2種,由互斥事件的概率加法公式,

可得

,

即連續(xù)抽取2張卡片,取出的2人不全是男生的概率為0.7……………6分

      (Ⅱ)有放回地連續(xù)抽取2張卡片,需注意同一張卡片可再次被取出,并且它被取出的可能性和其他卡片相等,我們用一個有序?qū)崝?shù)對表示抽取的結(jié)果,例如“第一次取出2號,第二次取出4號”就用(2,4)來表示,所有的可能結(jié)果可以用下表列出。

   

   第二次抽取

 

第一次抽取

1

2

3

4

5

1

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

2

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

3

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

4

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

5

(5,1)

(5,2)

(5,3)

(5,4)

(5,5)

       

           試驗的所有可能結(jié)果數(shù)為25,并且這25種結(jié)果出現(xiàn)的可能性是相同的,試驗屬于古典型。                                …………………………8分

           用表示事件“獨唱和朗誦由同一個人表演”,由上表可以看出,的結(jié)果共

有5種,因此獨唱和朗誦由同一個人表演的概率

                      ……………………………12分

(21)解:

(I)

          依題意有                           ………………………2分

          即  解得          …………………………4分

         

          由,得                   

           的單調(diào)遞減區(qū)間是            ………………………6分

     (Ⅱ)由  得   ………………………8分

           不等式組確定的平面區(qū)域如圖陰影部分所示:

           由   得        ………………………8分

            不等式組確定的平面區(qū)域如圖陰影部分所示:

           由   得

            點的坐標為(0,-1).   ………………10分

           設(shè)表示平面區(qū)域內(nèi)的點()與點

            連線斜率。

            由圖可知,

            即……………12分

(22)解:

(I)設(shè)橢圓方程為

     則根據(jù)題意,雙曲線的方程為

     且滿足

           解方程組得    ……………………4分

     橢圓的方程為,雙曲線的方程 ………………6分

(Ⅱ)由(I)得

      設(shè)則由的中點,所以點坐標為

坐標代入橢圓和雙曲線方程,得

消去,得

解之得(舍)

所以,由此可得

所以                        …………………………10分

時,直線的方程是

代入,得

所以或-5(舍)                ……………………………12分

所以

軸。

所以   ……………………14分

 

 


同步練習(xí)冊答案