題目列表(包括答案和解析)
已知m>1,直線,橢圓C:,、分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內,求實數(shù)m的取值范圍.[
【解析】第一問中因為直線經(jīng)過點(,0),所以=,得.又因為m>1,所以,故直線的方程為
第二問中設,由,消去x,得,
則由,知<8,且有
由題意知O為的中點.由可知從而,設M是GH的中點,則M().
由題意可知,2|MO|<|GH|,得到范圍
已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于、兩點。
(I)求曲線的方程;
(II)試證明:在軸上存在定點,使得總能被軸平分
【解析】第一問中設為曲線上的任意一點,則點在圓上,
∴,曲線的方程為
第二問中,設點的坐標為,直線的方程為, ………………3分
代入曲線的方程,可得
∵,∴
確定結論直線與曲線總有兩個公共點.
然后設點,的坐標分別, ,則,
要使被軸平分,只要得到。
(1)設為曲線上的任意一點,則點在圓上,
∴,曲線的方程為. ………………2分
(2)設點的坐標為,直線的方程為, ………………3分
代入曲線的方程,可得 ,……5分
∵,∴,
∴直線與曲線總有兩個公共點.(也可根據(jù)點M在橢圓的內部得到此結論)
………………6分
設點,的坐標分別, ,則,
要使被軸平分,只要, ………………9分
即,, ………………10分
也就是,,
即,即只要 ………………12分
當時,(*)對任意的s都成立,從而總能被軸平分.
所以在x軸上存在定點,使得總能被軸平分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com