高度滿足條件 ⑷以合力F合方向.垂直于合力方向分別建立坐標系.并將速度分解.當F與mg的合力與v垂直時.即圖中vy=0時小球的動能最小.設經(jīng)過的時間為t 查看更多

 

題目列表(包括答案和解析)

第六部分 振動和波

第一講 基本知識介紹

《振動和波》的競賽考綱和高考要求有很大的不同,必須做一些相對詳細的補充。

一、簡諧運動

1、簡諧運動定義:= -k             

凡是所受合力和位移滿足①式的質(zhì)點,均可稱之為諧振子,如彈簧振子、小角度單擺等。

諧振子的加速度:= -

2、簡諧運動的方程

回避高等數(shù)學工具,我們可以將簡諧運動看成勻速圓周運動在某一條直線上的投影運動(以下均看在x方向的投影),圓周運動的半徑即為簡諧運動的振幅A 。

依據(jù):x = -mω2Acosθ= -mω2

對于一個給定的勻速圓周運動,m、ω是恒定不變的,可以令:

2 = k 

這樣,以上兩式就符合了簡諧運動的定義式①。所以,x方向的位移、速度、加速度就是簡諧運動的相關(guān)規(guī)律。從圖1不難得出——

位移方程: = Acos(ωt + φ)                                        ②

速度方程: = -ωAsin(ωt +φ)                                     ③

加速度方程:= -ω2A cos(ωt +φ)                                   ④

相關(guān)名詞:(ωt +φ)稱相位,φ稱初相。

運動學參量的相互關(guān)系:= -ω2

A = 

tgφ= -

3、簡諧運動的合成

a、同方向、同頻率振動合成。兩個振動x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振動x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得

A =  ,φ= arctg 

顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),合振幅A最大,當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),合振幅最小。

b、方向垂直、同頻率振動合成。當質(zhì)點同時參與兩個垂直的振動x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)時,這兩個振動方程事實上已經(jīng)構(gòu)成了質(zhì)點在二維空間運動的軌跡參數(shù)方程,消去參數(shù)t后,得一般形式的軌跡方程為

+-2cos(φ2-φ1) = sin22-φ1)

顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),有y = x ,軌跡為直線,合運動仍為簡諧運動;

當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),有+= 1 ,軌跡為橢圓,合運動不再是簡諧運動;

當φ2-φ1取其它值,軌跡將更為復雜,稱“李薩如圖形”,不是簡諧運動。

c、同方向、同振幅、頻率相近的振動合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合運動x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合運動是振動,但不是簡諧運動,稱為角頻率為的“拍”現(xiàn)象。

4、簡諧運動的周期

由②式得:ω=  ,而圓周運動的角速度和簡諧運動的角頻率是一致的,所以

T = 2π                                                      

5、簡諧運動的能量

一個做簡諧運動的振子的能量由動能和勢能構(gòu)成,即

mv2 + kx2 = kA2

注意:振子的勢能是由(回復力系數(shù))k和(相對平衡位置位移)x決定的一個抽象的概念,而不是具體地指重力勢能或彈性勢能。當我們計量了振子的抽象勢能后,其它的具體勢能不能再做重復計量。

6、阻尼振動、受迫振動和共振

和高考要求基本相同。

二、機械波

1、波的產(chǎn)生和傳播

產(chǎn)生的過程和條件;傳播的性質(zhì),相關(guān)參量(決定參量的物理因素)

2、機械波的描述

a、波動圖象。和振動圖象的聯(lián)系

b、波動方程

如果一列簡諧波沿x方向傳播,振源的振動方程為y = Acos(ωt + φ),波的傳播速度為v ,那么在離振源x處一個振動質(zhì)點的振動方程便是

y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕

這個方程展示的是一個復變函數(shù)。對任意一個時刻t ,都有一個y(x)的正弦函數(shù),在x-y坐標下可以描繪出一個瞬時波形。所以,稱y = Acos〔ω(t - )+ φ〕為波動方程。

3、波的干涉

a、波的疊加。幾列波在同一介質(zhì)種傳播時,能獨立的維持它們的各自形態(tài)傳播,在相遇的區(qū)域則遵從矢量疊加(包括位移、速度和加速度的疊加)。

b、波的干涉。兩列波頻率相同、相位差恒定時,在同一介質(zhì)中的疊加將形成一種特殊形態(tài):振動加強的區(qū)域和振動削弱的區(qū)域穩(wěn)定分布且彼此隔開。

我們可以用波程差的方法來討論干涉的定量規(guī)律。如圖2所示,我們用S1和S2表示兩個波源,P表示空間任意一點。

當振源的振動方向相同時,令振源S1的振動方程為y1 = A1cosωt ,振源S1的振動方程為y2 = A2cosωt ,則在空間P點(距S1為r1 ,距S2為r2),兩振源引起的分振動分別是

y1′= A1cos〔ω(t ? )〕

y2′= A2cos〔ω(t ? )〕

P點便出現(xiàn)兩個頻率相同、初相不同的振動疊加問題(φ1 =  ,φ2 = ),且初相差Δφ= (r2 – r1)。根據(jù)前面已經(jīng)做過的討論,有

r2 ? r1 = kλ時(k = 0,±1,±2,…),P點振動加強,振幅為A1 + A2 ;

r2 ? r1 =(2k ? 1)時(k = 0,±1,±2,…),P點振動削弱,振幅為│A1-A2│。

4、波的反射、折射和衍射

知識點和高考要求相同。

5、多普勒效應

當波源或者接受者相對與波的傳播介質(zhì)運動時,接收者會發(fā)現(xiàn)波的頻率發(fā)生變化。多普勒效應的定量討論可以分為以下三種情況(在討論中注意:波源的發(fā)波頻率f和波相對介質(zhì)的傳播速度v是恒定不變的)——

a、只有接收者相對介質(zhì)運動(如圖3所示)

設接收者以速度v1正對靜止的波源運動。

如果接收者靜止在A點,他單位時間接收的波的個數(shù)為f ,

當他迎著波源運動時,設其在單位時間到達B點,則= v1 ,、

在從A運動到B的過程中,接收者事實上“提前”多接收到了n個波

n = 

顯然,在單位時間內(nèi),接收者接收到的總的波的數(shù)目為:f + n = f ,這就是接收者發(fā)現(xiàn)的頻率f。即

f

顯然,如果v1背離波源運動,只要將上式中的v1代入負值即可。如果v1的方向不是正對S ,只要將v1出正對的分量即可。

b、只有波源相對介質(zhì)運動(如圖4所示)

設波源以速度v2正對靜止的接收者運動。

如果波源S不動,在單位時間內(nèi),接收者在A點應接收f個波,故S到A的距離:= fλ 

在單位時間內(nèi),S運動至S′,即= v2 。由于波源的運動,事實造成了S到A的f個波被壓縮在了S′到A的空間里,波長將變短,新的波長

λ′= 

而每個波在介質(zhì)中的傳播速度仍為v ,故“被壓縮”的波(A接收到的波)的頻率變?yōu)?/p>

f2 = 

當v2背離接收者,或有一定夾角的討論,類似a情形。

c、當接收者和波源均相對傳播介質(zhì)運動

當接收者正對波源以速度v1(相對介質(zhì)速度)運動,波源也正對接收者以速度v2(相對介質(zhì)速度)運動,我們的討論可以在b情形的過程上延續(xù)…

f3 =  f2 = 

關(guān)于速度方向改變的問題,討論類似a情形。

6、聲波

a、樂音和噪音

b、聲音的三要素:音調(diào)、響度和音品

c、聲音的共鳴

第二講 重要模型與專題

一、簡諧運動的證明與周期計算

物理情形:如圖5所示,將一粗細均勻、兩邊開口的U型管固定,其中裝有一定量的水銀,汞柱總長為L 。當水銀受到一個初始的擾動后,開始在管中振動。忽略管壁對汞的阻力,試證明汞柱做簡諧運動,并求其周期。

模型分析:對簡諧運動的證明,只要以汞柱為對象,看它的回復力與位移關(guān)系是否滿足定義式①,值得注意的是,回復力系指振動方向上的合力(而非整體合力)。當簡諧運動被證明后,回復力系數(shù)k就有了,求周期就是順理成章的事。

本題中,可設汞柱兩端偏離平衡位置的瞬時位移為x 、水銀密度為ρ、U型管橫截面積為S ,則次瞬時的回復力

ΣF = ρg2xS = x

由于L、m為固定值,可令: = k ,而且ΣF與x的方向相反,故汞柱做簡諧運動。

周期T = 2π= 2π

答:汞柱的周期為2π 。

學生活動:如圖6所示,兩個相同的柱形滾輪平行、登高、水平放置,繞各自的軸線等角速、反方向地轉(zhuǎn)動,在滾輪上覆蓋一塊均質(zhì)的木板。已知兩滾輪軸線的距離為L 、滾輪與木板之間的動摩擦因素為μ、木板的質(zhì)量為m ,且木板放置時,重心不在兩滾輪的正中央。試證明木板做簡諧運動,并求木板運動的周期。

思路提示:找平衡位置(木板重心在兩滾輪中央處)→ú力矩平衡和Σ?F6= 0結(jié)合求兩處彈力→ú求摩擦力合力…

答案:木板運動周期為2π 。

鞏固應用:如圖7所示,三根長度均為L = 2.00m地質(zhì)量均勻直桿,構(gòu)成一正三角形框架ABC,C點懸掛在一光滑水平軸上,整個框架可繞轉(zhuǎn)軸轉(zhuǎn)動。桿AB是一導軌,一電動松鼠可在導軌上運動,F(xiàn)觀察到松鼠正在導軌上運動,而框架卻靜止不動,試討論松鼠的運動是一種什么樣的運動。

解說:由于框架靜止不動,松鼠在豎直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。設松鼠的質(zhì)量為m ,即:

N = mg                            ①

再回到框架,其靜止平衡必滿足框架所受合力矩為零。以C點為轉(zhuǎn)軸,形成力矩的只有松鼠的壓力N、和松鼠可能加速的靜摩擦力f ,它們合力矩為零,即:

MN = Mf

現(xiàn)考查松鼠在框架上的某個一般位置(如圖7,設它在導軌方向上距C點為x),上式即成:

N·x = f·Lsin60°                 ②

解①②兩式可得:f = x ,且f的方向水平向左。

根據(jù)牛頓第三定律,這個力就是松鼠在導軌方向上的合力。如果我們以C在導軌上的投影點為參考點,x就是松鼠的瞬時位移。再考慮到合力與位移的方向因素,松鼠的合力與位移滿足關(guān)系——

= -k

其中k =  ,對于這個系統(tǒng)而言,k是固定不變的。

顯然這就是簡諧運動的定義式。

答案:松鼠做簡諧運動。

評說:這是第十三屆物理奧賽預賽試題,問法比較模糊。如果理解為定性求解,以上答案已經(jīng)足夠。但考慮到原題中還是有定量的條件,所以做進一步的定量運算也是有必要的。譬如,我們可以求出松鼠的運動周期為:T = 2π = 2π = 2.64s 。

二、典型的簡諧運動

1、彈簧振子

物理情形:如圖8所示,用彈性系數(shù)為k的輕質(zhì)彈簧連著一個質(zhì)量為m的小球,置于傾角為θ

查看答案和解析>>

第一部分  力&物體的平衡

第一講 力的處理

一、矢量的運算

1、加法

表達: +  =  。

名詞:為“和矢量”。

法則:平行四邊形法則。如圖1所示。

和矢量大。篶 =  ,其中α為的夾角。

和矢量方向:、之間,和夾角β= arcsin

2、減法

表達: =  。

名詞:為“被減數(shù)矢量”,為“減數(shù)矢量”,為“差矢量”。

法則:三角形法則。如圖2所示。將被減數(shù)矢量和減數(shù)矢量的起始端平移到一點,然后連接兩時量末端,指向被減數(shù)時量的時量,即是差矢量。

差矢量大小:a =  ,其中θ為的夾角。

差矢量的方向可以用正弦定理求得。

一條直線上的矢量運算是平行四邊形和三角形法則的特例。

例題:已知質(zhì)點做勻速率圓周運動,半徑為R ,周期為T ,求它在T內(nèi)和在T內(nèi)的平均加速度大小。

解說:如圖3所示,A到B點對應T的過程,A到C點對應T的過程。這三點的速度矢量分別設為。

根據(jù)加速度的定義 得:,

由于有兩處涉及矢量減法,設兩個差矢量  , ,根據(jù)三角形法則,它們在圖3中的大小、方向已繪出(的“三角形”已被拉伸成一條直線)。

本題只關(guān)心各矢量的大小,顯然:

 =  =  =  ,且: =   = 2

所以: =  =  , =  =  。

(學生活動)觀察與思考:這兩個加速度是否相等,勻速率圓周運動是不是勻變速運動?

答:否;不是。

3、乘法

矢量的乘法有兩種:叉乘和點乘,和代數(shù)的乘法有著質(zhì)的不同。

⑴ 叉乘

表達:× = 

名詞:稱“矢量的叉積”,它是一個新的矢量。

叉積的大。篶 = absinα,其中α為的夾角。意義:的大小對應由作成的平行四邊形的面積。

叉積的方向:垂直確定的平面,并由右手螺旋定則確定方向,如圖4所示。

顯然,××,但有:×= -×

⑵ 點乘

表達:· = c

名詞:c稱“矢量的點積”,它不再是一個矢量,而是一個標量。

點積的大。篶 = abcosα,其中α為的夾角。

二、共點力的合成

1、平行四邊形法則與矢量表達式

2、一般平行四邊形的合力與分力的求法

余弦定理(或分割成RtΔ)解合力的大小

正弦定理解方向

三、力的分解

1、按效果分解

2、按需要——正交分解

第二講 物體的平衡

一、共點力平衡

1、特征:質(zhì)心無加速度。

2、條件:Σ = 0 ,或  = 0 , = 0

例題:如圖5所示,長為L 、粗細不均勻的橫桿被兩根輕繩水平懸掛,繩子與水平方向的夾角在圖上已標示,求橫桿的重心位置。

解說:直接用三力共點的知識解題,幾何關(guān)系比較簡單。

答案:距棒的左端L/4處。

(學生活動)思考:放在斜面上的均質(zhì)長方體,按實際情況分析受力,斜面的支持力會通過長方體的重心嗎?

解:將各處的支持力歸納成一個N ,則長方體受三個力(G 、f 、N)必共點,由此推知,N不可能通過長方體的重心。正確受力情形如圖6所示(通常的受力圖是將受力物體看成一個點,這時,N就過重心了)。

答:不會。

二、轉(zhuǎn)動平衡

1、特征:物體無轉(zhuǎn)動加速度。

2、條件:Σ= 0 ,或ΣM+ =ΣM- 

如果物體靜止,肯定會同時滿足兩種平衡,因此用兩種思路均可解題。

3、非共點力的合成

大小和方向:遵從一條直線矢量合成法則。

作用點:先假定一個等效作用點,然后讓所有的平行力對這個作用點的和力矩為零。

第三講 習題課

1、如圖7所示,在固定的、傾角為α斜面上,有一塊可以轉(zhuǎn)動的夾板(β不定),夾板和斜面夾著一個質(zhì)量為m的光滑均質(zhì)球體,試求:β取何值時,夾板對球的彈力最小。

解說:法一,平行四邊形動態(tài)處理。

對球體進行受力分析,然后對平行四邊形中的矢量G和N1進行平移,使它們構(gòu)成一個三角形,如圖8的左圖和中圖所示。

由于G的大小和方向均不變,而N1的方向不可變,當β增大導致N2的方向改變時,N2的變化和N1的方向變化如圖8的右圖所示。

顯然,隨著β增大,N1單調(diào)減小,而N2的大小先減小后增大,當N2垂直N1時,N2取極小值,且N2min = Gsinα。

法二,函數(shù)法。

看圖8的中間圖,對這個三角形用正弦定理,有:

 =  ,即:N2 =  ,β在0到180°之間取值,N2的極值討論是很容易的。

答案:當β= 90°時,甲板的彈力最小。

2、把一個重為G的物體用一個水平推力F壓在豎直的足夠高的墻壁上,F(xiàn)隨時間t的變化規(guī)律如圖9所示,則在t = 0開始物體所受的摩擦力f的變化圖線是圖10中的哪一個?

解說:靜力學旨在解決靜態(tài)問題和準靜態(tài)過程的問題,但本題是一個例外。物體在豎直方向的運動先加速后減速,平衡方程不再適用。如何避開牛頓第二定律,是本題授課時的難點。

靜力學的知識,本題在于區(qū)分兩種摩擦的不同判據(jù)。

水平方向合力為零,得:支持力N持續(xù)增大。

物體在運動時,滑動摩擦力f = μN ,必持續(xù)增大。但物體在靜止后靜摩擦力f′≡ G ,與N沒有關(guān)系。

對運動過程加以分析,物體必有加速和減速兩個過程。據(jù)物理常識,加速時,f < G ,而在減速時f > G 。

答案:B 。

3、如圖11所示,一個重量為G的小球套在豎直放置的、半徑為R的光滑大環(huán)上,另一輕質(zhì)彈簧的勁度系數(shù)為k ,自由長度為L(L<2R),一端固定在大圓環(huán)的頂點A ,另一端與小球相連。環(huán)靜止平衡時位于大環(huán)上的B點。試求彈簧與豎直方向的夾角θ。

解說:平行四邊形的三個矢量總是可以平移到一個三角形中去討論,解三角形的典型思路有三種:①分割成直角三角形(或本來就是直角三角形);②利用正、余弦定理;③利用力學矢量三角形和某空間位置三角形相似。本題旨在貫徹第三種思路。

分析小球受力→矢量平移,如圖12所示,其中F表示彈簧彈力,N表示大環(huán)的支持力。

(學生活動)思考:支持力N可不可以沿圖12中的反方向?(正交分解看水平方向平衡——不可以。)

容易判斷,圖中的灰色矢量三角形和空間位置三角形ΔAOB是相似的,所以:

                                   ⑴

由胡克定律:F = k(- R)                ⑵

幾何關(guān)系:= 2Rcosθ                     ⑶

解以上三式即可。

答案:arccos 。

(學生活動)思考:若將彈簧換成勁度系數(shù)k′較大的彈簧,其它條件不變,則彈簧彈力怎么變?環(huán)的支持力怎么變?

答:變;不變。

(學生活動)反饋練習:光滑半球固定在水平面上,球心O的正上方有一定滑輪,一根輕繩跨過滑輪將一小球從圖13所示的A位置開始緩慢拉至B位置。試判斷:在此過程中,繩子的拉力T和球面支持力N怎樣變化?

解:和上題完全相同。

答:T變小,N不變。

4、如圖14所示,一個半徑為R的非均質(zhì)圓球,其重心不在球心O點,先將它置于水平地面上,平衡時球面上的A點和地面接觸;再將它置于傾角為30°的粗糙斜面上,平衡時球面上的B點與斜面接觸,已知A到B的圓心角也為30°。試求球體的重心C到球心O的距離。

解說:練習三力共點的應用。

根據(jù)在平面上的平衡,可知重心C在OA連線上。根據(jù)在斜面上的平衡,支持力、重力和靜摩擦力共點,可以畫出重心的具體位置。幾何計算比較簡單。

答案:R 。

(學生活動)反饋練習:靜摩擦足夠,將長為a 、厚為b的磚塊碼在傾角為θ的斜面上,最多能碼多少塊?

解:三力共點知識應用。

答: 。

4、兩根等長的細線,一端拴在同一懸點O上,另一端各系一個小球,兩球的質(zhì)量分別為m1和m2 ,已知兩球間存在大小相等、方向相反的斥力而使兩線張開一定角度,分別為45和30°,如圖15所示。則m1 : m2??為多少?

解說:本題考查正弦定理、或力矩平衡解靜力學問題。

對兩球進行受力分析,并進行矢量平移,如圖16所示。

首先注意,圖16中的灰色三角形是等腰三角形,兩底角相等,設為α。

而且,兩球相互作用的斥力方向相反,大小相等,可用同一字母表示,設為F 。

對左邊的矢量三角形用正弦定理,有:

 =          ①

同理,對右邊的矢量三角形,有: =                                ②

解①②兩式即可。

答案:1 : 。

(學生活動)思考:解本題是否還有其它的方法?

答:有——將模型看成用輕桿連成的兩小球,而將O點看成轉(zhuǎn)軸,兩球的重力對O的力矩必然是平衡的。這種方法更直接、簡便。

應用:若原題中繩長不等,而是l1 :l2 = 3 :2 ,其它條件不變,m1與m2的比值又將是多少?

解:此時用共點力平衡更加復雜(多一個正弦定理方程),而用力矩平衡則幾乎和“思考”完全相同。

答:2 :3 。

5、如圖17所示,一個半徑為R的均質(zhì)金屬球上固定著一根長為L的輕質(zhì)細桿,細桿的左端用鉸鏈與墻壁相連,球下邊墊上一塊木板后,細桿恰好水平,而木板下面是光滑的水平面。由于金屬球和木板之間有摩擦(已知摩擦因素為μ),所以要將木板從球下面向右抽出時,至少需要大小為F的水平拉力。試問:現(xiàn)要將木板繼續(xù)向左插進一些,至少需要多大的水平推力?

解說:這是一個典型的力矩平衡的例題。

以球和桿為對象,研究其對轉(zhuǎn)軸O的轉(zhuǎn)動平衡,設木板拉出時給球體的摩擦力為f ,支持力為N ,重力為G ,力矩平衡方程為:

f R + N(R + L)= G(R + L)           

球和板已相對滑動,故:f = μN        ②

解①②可得:f = 

再看木板的平衡,F(xiàn) = f 。

同理,木板插進去時,球體和木板之間的摩擦f′=  = F′。

答案: 。

第四講 摩擦角及其它

一、摩擦角

1、全反力:接觸面給物體的摩擦力與支持力的合力稱全反力,一般用R表示,亦稱接觸反力。

2、摩擦角:全反力與支持力的最大夾角稱摩擦角,一般用φm表示。

此時,要么物體已經(jīng)滑動,必有:φm = arctgμ(μ為動摩擦因素),稱動摩擦力角;要么物體達到最大運動趨勢,必有:φms = arctgμs(μs為靜摩擦因素),稱靜摩擦角。通常處理為φm = φms 。

3、引入全反力和摩擦角的意義:使分析處理物體受力時更方便、更簡捷。

二、隔離法與整體法

1、隔離法:當物體對象有兩個或兩個以上時,有必要各個擊破,逐個講每個個體隔離開來分析處理,稱隔離法。

在處理各隔離方程之間的聯(lián)系時,應注意相互作用力的大小和方向關(guān)系。

2、整體法:當各個體均處于平衡狀態(tài)時,我們可以不顧個體的差異而講多個對象看成一個整體進行分析處理,稱整體法。

應用整體法時應注意“系統(tǒng)”、“內(nèi)力”和“外力”的涵義。

三、應用

1、物體放在水平面上,用與水平方向成30°的力拉物體時,物體勻速前進。若此力大小不變,改為沿水平方向拉物體,物體仍能勻速前進,求物體與水平面之間的動摩擦因素μ。

解說:這是一個能顯示摩擦角解題優(yōu)越性的題目。可以通過不同解法的比較讓學生留下深刻印象。

法一,正交分解。(學生分析受力→列方程→得結(jié)果。)

法二,用摩擦角解題。

引進全反力R ,對物體兩個平衡狀態(tài)進行受力分析,再進行矢量平移,得到圖18中的左圖和中間圖(注意:重力G是不變的,而全反力R的方向不變、F的大小不變),φm指摩擦角。

再將兩圖重疊成圖18的右圖。由于灰色的三角形是一個頂角為30°的等腰三角形,其頂角的角平分線必垂直底邊……故有:φm = 15°。

最后,μ= tgφm 。

答案:0.268 。

(學生活動)思考:如果F的大小是可以選擇的,那么能維持物體勻速前進的最小F值是多少?

解:見圖18,右圖中虛線的長度即Fmin ,所以,F(xiàn)min = Gsinφm 。

答:Gsin15°(其中G為物體的重量)。

2、如圖19所示,質(zhì)量m = 5kg的物體置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物體,使物體能夠沿斜面向上勻速運動,而斜面體始終靜止。已知斜面的質(zhì)量M = 10kg ,傾角為30°,重力加速度g = 10m/s2 ,求地面對斜面體的摩擦力大小。

解說:

本題旨在顯示整體法的解題的優(yōu)越性。

法一,隔離法。簡要介紹……

法二,整體法。注意,滑塊和斜面隨有相對運動,但從平衡的角度看,它們是完全等價的,可以看成一個整體。

做整體的受力分析時,內(nèi)力不加考慮。受力分析比較簡單,列水平方向平衡方程很容易解地面摩擦力。

答案:26.0N 。

(學生活動)地面給斜面體的支持力是多少?

解:略。

答:135N 。

應用:如圖20所示,一上表面粗糙的斜面體上放在光滑的水平地面上,斜面的傾角為θ。另一質(zhì)量為m的滑塊恰好能沿斜面勻速下滑。若用一推力F作用在滑塊上,使之能沿斜面勻速上滑,且要求斜面體靜止不動,就必須施加一個大小為P = 4mgsinθcosθ的水平推力作用于斜面體。使?jié)M足題意的這個F的大小和方向。

解說:這是一道難度較大的靜力學題,可以動用一切可能的工具解題。

法一:隔離法。

由第一個物理情景易得,斜面于滑塊的摩擦因素μ= tgθ

對第二個物理情景,分別隔離滑塊和斜面體分析受力,并將F沿斜面、垂直斜面分解成Fx和Fy ,滑塊與斜面之間的兩對相互作用力只用兩個字母表示(N表示正壓力和彈力,f表示摩擦力),如圖21所示。

對滑塊,我們可以考查沿斜面方向和垂直斜面方向的平衡——

Fx = f + mgsinθ

Fy + mgcosθ= N

且 f = μN = Ntgθ

綜合以上三式得到:

Fx = Fytgθ+ 2mgsinθ               ①

對斜面體,只看水平方向平衡就行了——

P = fcosθ+ Nsinθ

即:4mgsinθcosθ=μNcosθ+ Nsinθ

代入μ值,化簡得:Fy = mgcosθ      ②

②代入①可得:Fx = 3mgsinθ

最后由F =解F的大小,由tgα= 解F的方向(設α為F和斜面的夾角)。

答案:大小為F = mg,方向和斜面夾角α= arctg()指向斜面內(nèi)部。

法二:引入摩擦角和整體法觀念。

仍然沿用“法一”中關(guān)于F的方向設置(見圖21中的α角)。

先看整體的水平方向平衡,有:Fcos(θ- α) = P                                   ⑴

再隔離滑塊,分析受力時引進全反力R和摩擦角φ,由于簡化后只有三個力(R、mg和F),可以將矢量平移后構(gòu)成一個三角形,如圖22所示。

在圖22右邊的矢量三角形中,有: =      ⑵

注意:φ= arctgμ= arctg(tgθ) = θ                                              ⑶

解⑴⑵⑶式可得F和α的值。

查看答案和解析>>

第Ⅰ卷(選擇題 共31分)

一、單項選擇題.本題共5小題,每小題3分,共計15分.每小題只有一個選項符合題意.

1. 關(guān)于科學家和他們的貢獻,下列說法中正確的是[來源:Www..com]

A.安培首先發(fā)現(xiàn)了電流的磁效應

B.伽利略認為自由落體運動是速度隨位移均勻變化的運動

C.牛頓發(fā)現(xiàn)了萬有引力定律,并計算出太陽與地球間引力的大小

D.法拉第提出了電場的觀點,說明處于電場中電荷所受到的力是電場給予的

2.如圖為一種主動式光控報警器原理圖,圖中R1R2為光敏電阻,R3R4為定值電阻.當射向光敏電阻R1R2的任何一束光線被遮擋時,都會引起警鈴發(fā)聲,則圖中虛線框內(nèi)的電路是

A.與門                  B.或門               C.或非門                  D.與非門

 


3.如圖所示的交流電路中,理想變壓器原線圈輸入電壓為U1,輸入功率為P1,輸出功率為P2,各交流電表均為理想電表.當滑動變阻器R的滑動頭向下移動時

A.燈L變亮                                    B.各個電表讀數(shù)均變大

C.因為U1不變,所以P1不變                              D.P1變大,且始終有P1= P2

4.豎直平面內(nèi)光滑圓軌道外側(cè),一小球以某一水平速度v0A點出發(fā)沿圓軌道運動,至B點時脫離軌道,最終落在水平面上的C點,不計空氣阻力.下列說法中不正確的是

A.在B點時,小球?qū)A軌道的壓力為零

B.BC過程,小球做勻變速運動

C.在A點時,小球?qū)A軌道壓力大于其重力

D.AB過程,小球水平方向的加速度先增加后減小

5.如圖所示,水平面上放置質(zhì)量為M的三角形斜劈,斜劈頂端安裝光滑的定滑輪,細繩跨過定滑輪分別連接質(zhì)量為m1m2的物塊.m1在斜面上運動,三角形斜劈保持靜止狀態(tài).下列說法中正確的是

A.若m2向下運動,則斜劈受到水平面向左摩擦力

B.若m1沿斜面向下加速運動,則斜劈受到水平面向右的摩擦力

C.若m1沿斜面向下運動,則斜劈受到水平面的支持力大于(m1+ m2+Mg

D.若m2向上運動,則輕繩的拉力一定大于m2g

二、多項選擇題.本題共4小題,每小題4分,共計16分.每小題有多個選項符合題意.全部選對的得4分,選對但不全的得2分,錯選或不答的得0分.

6.木星是太陽系中最大的行星,它有眾多衛(wèi)星.觀察測出:木星繞太陽作圓周運動的半徑為r1 周期為T1;木星的某一衛(wèi)星繞木星作圓周運動的半徑為r2、 周期為T2.已知萬有引力常量為G,則根據(jù)題中給定條件

A.能求出木星的質(zhì)量

B.能求出木星與衛(wèi)星間的萬有引力

C.能求出太陽與木星間的萬有引力

D.可以斷定

7.如圖所示,xOy坐標平面在豎直面內(nèi),x軸沿水平方向,y軸正方向豎直向上,在圖示空間內(nèi)有垂直于xOy平面的水平勻強磁場.一帶電小球從O點由靜止釋放,運動軌跡如圖中曲線.關(guān)于帶電小球的運動,下列說法中正確的是

A.OAB軌跡為半圓

B.小球運動至最低點A時速度最大,且沿水平方向

C.小球在整個運動過程中機械能守恒

D.小球在A點時受到的洛倫茲力與重力大小相等

8.如圖所示,質(zhì)量為M、長為L的木板置于光滑的水平面上,一質(zhì)量為m的滑塊放置在木板左端,滑塊與木板間滑動摩擦力大小為f,用水平的恒定拉力F作用于滑塊.當滑塊運動到木板右端時,木板在地面上移動的距離為s,滑塊速度為v1,木板速度為v2,下列結(jié)論中正確的是

A.上述過程中,F做功大小為            

B.其他條件不變的情況下,F越大,滑塊到達右端所用時間越長

C.其他條件不變的情況下,M越大,s越小

D.其他條件不變的情況下,f越大,滑塊與木板間產(chǎn)生的熱量越多

9.如圖所示,兩個固定的相同細環(huán)相距一定的距離,同軸放置,O1、O2分別為兩環(huán)的圓心,兩環(huán)分別帶有均勻分布的等量異種電荷.一帶正電的粒子從很遠處沿軸線飛來并穿過兩環(huán).則在帶電粒子運動過程中

A.在O1點粒子加速度方向向左

B.從O1O2過程粒子電勢能一直增加

C.軸線上O1點右側(cè)存在一點,粒子在該點動能最小

D.軸線上O1點右側(cè)、O2點左側(cè)都存在場強為零的點,它們關(guān)于O1O2連線中點對稱

 


第Ⅱ卷(非選擇題 共89分)

三、簡答題:本題分必做題(第lO、11題)和選做題(第12題)兩部分,共計42分.請將解答填寫在答題卡相應的位置.

必做題

10.測定木塊與長木板之間的動摩擦因數(shù)時,采用如圖所示的裝置,圖中長木板水平固定.

(1)實驗過程中,電火花計時器應接在  ▲  (選填“直流”或“交流”)電源上.調(diào)整定滑輪高度,使  ▲ 

(2)已知重力加速度為g,測得木塊的質(zhì)量為M,砝碼盤和砝碼的總質(zhì)量為m,木塊的加速度為a,則木塊與長木板間動摩擦因數(shù)μ=  ▲ 

(3)如圖為木塊在水平木板上帶動紙帶運動打出的一條紙帶的一部分,0、1、2、3、4、5、6為計數(shù)點,相鄰兩計數(shù)點間還有4個打點未畫出.從紙帶上測出x1=3.20cm,x2=4.52cm,x5=8.42cm,x6=9.70cm.則木塊加速度大小a=  ▲  m/s2(保留兩位有效數(shù)字).

 


11.為了測量某電池的電動勢 E(約為3V)和內(nèi)阻 r,可供選擇的器材如下:

A.電流表G1(2mA  100Ω)             B.電流表G2(1mA  內(nèi)阻未知)

C.電阻箱R1(0~999.9Ω)                      D.電阻箱R2(0~9999Ω)

E.滑動變阻器R3(0~10Ω  1A)         F.滑動變阻器R4(0~1000Ω  10mA)

G.定值電阻R0(800Ω  0.1A)               H.待測電池

I.導線、電鍵若干

(1)采用如圖甲所示的電路,測定電流表G2的內(nèi)阻,得到電流表G1的示數(shù)I1、電流表G2的示數(shù)I2如下表所示:

I1(mA)

0.40

0.81

1.20

1.59

2.00

I2(mA)

0.20

0.40

0.60

0.80

1.00

 


根據(jù)測量數(shù)據(jù),請在圖乙坐標中描點作出I1I2圖線.由圖得到電流表G2的內(nèi)阻等于

  ▲  Ω.

(2)在現(xiàn)有器材的條件下,測量該電池電動勢和內(nèi)阻,采用如圖丙所示的電路,圖中滑動變阻器①應該選用給定的器材中  ▲  ,電阻箱②選  ▲  (均填寫器材代號).

(3)根據(jù)圖丙所示電路,請在丁圖中用筆畫線代替導線,完成實物電路的連接.

 


12.選做題(請從A、B和C三小題中選定兩小題作答,并在答題卡上把所選題目對應字母后的方框涂滿涂黑.如都作答,則按A、B兩小題評分.)

A.(選修模塊3-3)(12分)

(1)下列說法中正確的是  ▲ 

A.液體表面層分子間距離大于液體內(nèi)部分子間距離,液體表面存在張力

B.擴散運動就是布朗運動

C.蔗糖受潮后會粘在一起,沒有確定的幾何形狀,它是非晶體

D.對任何一類與熱現(xiàn)象有關(guān)的宏觀自然過程進行方向的說明,都可以作為熱力學第二定律的表述

(2)將1ml的純油酸加到500ml的酒精中,待均勻溶解后,用滴管取1ml油酸酒精溶液,讓其自然滴出,共200滴.現(xiàn)在讓其中一滴落到盛水的淺盤內(nèi),待油膜充分展開后,測得油膜的面積為200cm2,則估算油酸分子的大小是  ▲  m(保留一位有效數(shù)字).

(3)如圖所示,一直立的汽缸用一質(zhì)量為m的活塞封閉一定量的理想氣體,活塞橫截面積為S,汽缸內(nèi)壁光滑且缸壁是導熱的,開始活塞被固定,打開固定螺栓K,活塞下落,經(jīng)過足夠長時間后,活塞停在B點,已知AB=h,大氣壓強為p0,重力加速度為g

①求活塞停在B點時缸內(nèi)封閉氣體的壓強;

②設周圍環(huán)境溫度保持不變,求整個過程中通過缸壁傳遞的熱量Q(一定量理想氣體的內(nèi)能僅由溫度決定).

B.(選修模塊3-4)(12分)

(1)下列說法中正確的是  ▲ 

A.照相機、攝影機鏡頭表面涂有增透膜,利用了光的干涉原理

B.光照射遮擋物形成的影輪廓模糊,是光的衍射現(xiàn)象

C.太陽光是偏振光

D.為了有效地發(fā)射電磁波,應該采用長波發(fā)射

(2)甲、乙兩人站在地面上時身高都是L0, 甲、乙分別乘坐速度為0.6c和0.8cc為光速)的飛船同向運動,如圖所示.此時乙觀察到甲的身高L  ▲  L0;若甲向乙揮手,動作時間為t0,乙觀察到甲動作時間為t1,則t1  ▲  t0(均選填“>”、“ =” 或“<”).

(3)x=0的質(zhì)點在t=0時刻開始振動,產(chǎn)生的波沿x軸正方向傳播,t1=0.14s時刻波的圖象如圖所示,質(zhì)點A剛好開始振動.

①求波在介質(zhì)中的傳播速度;

②求x=4m的質(zhì)點在0.14s內(nèi)運動的路程.

   C.(選修模塊3-5)(12分)

(1)下列說法中正確的是  ▲ 

A.康普頓效應進一步證實了光的波動特性

B.為了解釋黑體輻射規(guī)律,普朗克提出電磁輻射的能量是量子化的

C.經(jīng)典物理學不能解釋原子的穩(wěn)定性和原子光譜的分立特征

D.天然放射性元素衰變的快慢與化學、物理狀態(tài)有關(guān)

(2)是不穩(wěn)定的,能自發(fā)的發(fā)生衰變.

①完成衰變反應方程    ▲ 

衰變?yōu)?img width=40 height=25 src="http://thumb.zyjl.cn/pic1/1899/wl/3/40403.gif" >,經(jīng)過  ▲  α衰變,  ▲  β衰變.

(3)1919年,盧瑟福用α粒子轟擊氮核發(fā)現(xiàn)質(zhì)子.科學研究表明其核反應過程是:α粒子轟擊靜止的氮核后形成了不穩(wěn)定的復核,復核發(fā)生衰變放出質(zhì)子,變成氧核.設α粒子質(zhì)量為m1,初速度為v0,氮核質(zhì)量為m2,質(zhì)子質(zhì)量為m0, 氧核的質(zhì)量為m3,不考慮相對論效應.

α粒子轟擊氮核形成不穩(wěn)定復核的瞬間,復核的速度為多大?

②求此過程中釋放的核能.

四、計算題:本題共3小題,共計47分.解答時請寫出必要的文字說明、方程式和重要的演算步驟,只寫出最后答案的不能得分,有數(shù)值計算的題,答案中必須明確寫出數(shù)值和單位.

13.如圖所示,一質(zhì)量為m的氫氣球用細繩拴在地面上,地面上空風速水平且恒為v0,球靜止時繩與水平方向夾角為α.某時刻繩突然斷裂,氫氣球飛走.已知氫氣球在空氣中運動時所受到的阻力f正比于其相對空氣的速度v,可以表示為f=kvk為已知的常數(shù)).則

(1)氫氣球受到的浮力為多大?

(2)繩斷裂瞬間,氫氣球加速度為多大?

(3)一段時間后氫氣球在空中做勻速直線運動,其水平方向上的速度與風速v0相等,求此時氣球速度大小(設空氣密度不發(fā)生變化,重力加速度為g).

 


14.如圖所示,光滑絕緣水平面上放置一均勻?qū)w制成的正方形線框abcd,線框質(zhì)量為m,電阻為R,邊長為L.有一方向豎直向下的有界磁場,磁場的磁感應強度為B,磁場區(qū)寬度大于L,左邊界與ab邊平行.線框在水平向右的拉力作用下垂直于邊界線穿過磁場區(qū).

(1)若線框以速度v勻速穿過磁場區(qū),求線框在離開磁場時ab兩點間的電勢差;

(2)若線框從靜止開始以恒定的加速度a運動,經(jīng)過t1時間ab邊開始進入磁場,求cd邊將要進入磁場時刻回路的電功率;

(3)若線框以初速度v0進入磁場,且拉力的功率恒為P0.經(jīng)過時間T,cd邊進入磁場,此過程中回路產(chǎn)生的電熱為Q.后來ab邊剛穿出磁場時,線框速度也為v0,求線框穿過磁場所用的時間t

      

15.如圖所示,有界勻強磁場的磁感應強度為B,方向垂直紙面向里,MN為其左邊界,磁場中放置一半徑為R的圓柱形金屬圓筒,圓心OMN的距離OO1=2R,圓筒軸線與磁場平行.圓筒用導線通過一個電阻r0接地,最初金屬圓筒不帶電.現(xiàn)有范圍足夠大的平行電子束以速度v0從很遠處沿垂直于左邊界MN向右射入磁場區(qū),已知電子質(zhì)量為m,電量為e

(1)若電子初速度滿足,則在最初圓筒上沒有帶電時,能夠打到圓筒上的電子對應MN邊界上O1兩側(cè)的范圍是多大?

(2)當圓筒上電量達到相對穩(wěn)定時,測量得到通過電阻r0的電流恒為I,忽略運動電子間的相互作用,求此時金屬圓筒的電勢φ和電子到達圓筒時速度v(取無窮遠處或大地電勢為零).

(3)在(2)的情況下,求金屬圓筒的發(fā)熱功率.

 


查看答案和解析>>

第八部分 靜電場

第一講 基本知識介紹

在奧賽考綱中,靜電學知識點數(shù)目不算多,總數(shù)和高考考綱基本相同,但在個別知識點上,奧賽的要求顯然更加深化了:如非勻強電場中電勢的計算、電容器的連接和靜電能計算、電介質(zhì)的極化等。在處理物理問題的方法上,對無限分割和疊加原理提出了更高的要求。

如果把靜電場的問題分為兩部分,那就是電場本身的問題、和對場中帶電體的研究,高考考綱比較注重第二部分中帶電粒子的運動問題,而奧賽考綱更注重第一部分和第二部分中的靜態(tài)問題。也就是說,奧賽關(guān)注的是電場中更本質(zhì)的內(nèi)容,關(guān)注的是縱向的深化和而非橫向的綜合。

一、電場強度

1、實驗定律

a、庫侖定律

內(nèi)容;

條件:⑴點電荷,⑵真空,⑶點電荷靜止或相對靜止。事實上,條件⑴和⑵均不能視為對庫侖定律的限制,因為疊加原理可以將點電荷之間的靜電力應用到一般帶電體,非真空介質(zhì)可以通過介電常數(shù)將k進行修正(如果介質(zhì)分布是均勻和“充分寬廣”的,一般認為k′= k /εr)。只有條件⑶,它才是靜電學的基本前提和出發(fā)點(但這一點又是常常被忽視和被不恰當?shù)亍熬C合應用”的)。

b、電荷守恒定律

c、疊加原理

2、電場強度

a、電場強度的定義

電場的概念;試探電荷(檢驗電荷);定義意味著一種適用于任何電場的對電場的檢測手段;電場線是抽象而直觀地描述電場有效工具(電場線的基本屬性)。

b、不同電場中場強的計算

決定電場強弱的因素有兩個:場源(帶電量和帶電體的形狀)和空間位置。這可以從不同電場的場強決定式看出——

⑴點電荷:E = k

結(jié)合點電荷的場強和疊加原理,我們可以求出任何電場的場強,如——

⑵均勻帶電環(huán),垂直環(huán)面軸線上的某點P:E = ,其中r和R的意義見圖7-1。

⑶均勻帶電球殼

內(nèi)部:E內(nèi) = 0

外部:E = k ,其中r指考察點到球心的距離

如果球殼是有厚度的的(內(nèi)徑R1 、外徑R2),在殼體中(R1<r<R2):

E =  ,其中ρ為電荷體密度。這個式子的物理意義可以參照萬有引力定律當中(條件部分)的“剝皮法則”理解〔即為圖7-2中虛線以內(nèi)部分的總電量…〕。

⑷無限長均勻帶電直線(電荷線密度為λ):E = 

⑸無限大均勻帶電平面(電荷面密度為σ):E = 2πkσ

二、電勢

1、電勢:把一電荷從P點移到參考點P0時電場力所做的功W與該電荷電量q的比值,即

U = 

參考點即電勢為零的點,通常取無窮遠或大地為參考點。

和場強一樣,電勢是屬于場本身的物理量。W則為電荷的電勢能。

2、典型電場的電勢

a、點電荷

以無窮遠為參考點,U = k

b、均勻帶電球殼

以無窮遠為參考點,U = k ,U內(nèi) = k

3、電勢的疊加

由于電勢的是標量,所以電勢的疊加服從代數(shù)加法。很顯然,有了點電荷電勢的表達式和疊加原理,我們可以求出任何電場的電勢分布。

4、電場力對電荷做功

WAB = q(UA - UB)= qUAB 

三、靜電場中的導體

靜電感應→靜電平衡(狹義和廣義)→靜電屏蔽

1、靜電平衡的特征可以總結(jié)為以下三層含義——

a、導體內(nèi)部的合場強為零;表面的合場強不為零且一般各處不等,表面的合場強方向總是垂直導體表面。

b、導體是等勢體,表面是等勢面。

c、導體內(nèi)部沒有凈電荷;孤立導體的凈電荷在表面的分布情況取決于導體表面的曲率。

2、靜電屏蔽

導體殼(網(wǎng)罩)不接地時,可以實現(xiàn)外部對內(nèi)部的屏蔽,但不能實現(xiàn)內(nèi)部對外部的屏蔽;導體殼(網(wǎng)罩)接地后,既可實現(xiàn)外部對內(nèi)部的屏蔽,也可實現(xiàn)內(nèi)部對外部的屏蔽。

四、電容

1、電容器

孤立導體電容器→一般電容器

2、電容

a、定義式 C = 

b、決定式。決定電容器電容的因素是:導體的形狀和位置關(guān)系、絕緣介質(zhì)的種類,所以不同電容器有不同的電容

⑴平行板電容器 C =  =  ,其中ε為絕對介電常數(shù)(真空中ε0 =  ,其它介質(zhì)中ε= ),εr則為相對介電常數(shù),εr =  。

⑵柱形電容器:C = 

⑶球形電容器:C = 

3、電容器的連接

a、串聯(lián)  = +++ … +

b、并聯(lián) C = C1 + C2 + C3 + … + Cn 

4、電容器的能量

用圖7-3表征電容器的充電過程,“搬運”電荷做功W就是圖中陰影的面積,這也就是電容器的儲能E ,所以

E = q0U0 = C = 

電場的能量。電容器儲存的能量究竟是屬于電荷還是屬于電場?正確答案是后者,因此,我們可以將電容器的能量用場強E表示。

對平行板電容器 E = E2 

認為電場能均勻分布在電場中,則單位體積的電場儲能 w = E2 。而且,這以結(jié)論適用于非勻強電場。

五、電介質(zhì)的極化

1、電介質(zhì)的極化

a、電介質(zhì)分為兩類:無極分子和有極分子,前者是指在沒有外電場時每個分子的正、負電荷“重心”彼此重合(如氣態(tài)的H2 、O2 、N2和CO2),后者則反之(如氣態(tài)的H2O 、SO2和液態(tài)的水硝基笨)

b、電介質(zhì)的極化:當介質(zhì)中存在外電場時,無極分子會變?yōu)橛袠O分子,有極分子會由原來的雜亂排列變成規(guī)則排列,如圖7-4所示。

2、束縛電荷、自由電荷、極化電荷與宏觀過剩電荷

a、束縛電荷與自由電荷:在圖7-4中,電介質(zhì)左右兩端分別顯現(xiàn)負電和正電,但這些電荷并不能自由移動,因此稱為束縛電荷,除了電介質(zhì),導體中的原子核和內(nèi)層電子也是束縛電荷;反之,能夠自由移動的電荷稱為自由電荷。事實上,導體中存在束縛電荷與自由電荷,絕緣體中也存在束縛電荷和自由電荷,只是它們的比例差異較大而已。

b、極化電荷是更嚴格意義上的束縛電荷,就是指圖7-4中電介質(zhì)兩端顯現(xiàn)的電荷。而宏觀過剩電荷是相對極化電荷來說的,它是指可以自由移動的凈電荷。宏觀過剩電荷與極化電荷的重要區(qū)別是:前者能夠用來沖放電,也能用儀表測量,但后者卻不能。

第二講 重要模型與專題

一、場強和電場力

【物理情形1】試證明:均勻帶電球殼內(nèi)部任意一點的場強均為零。

【模型分析】這是一個疊加原理應用的基本事例。

如圖7-5所示,在球殼內(nèi)取一點P ,以P為頂點做兩個對頂?shù)摹㈨斀呛苄〉腻F體,錐體與球面相交得到球面上的兩個面元ΔS1和ΔS2 ,設球面的電荷面密度為σ,則這兩個面元在P點激發(fā)的場強分別為

ΔE1 = k

ΔE2 = k

為了弄清ΔE1和ΔE2的大小關(guān)系,引進錐體頂部的立體角ΔΩ ,顯然

 = ΔΩ = 

所以 ΔE1 = k ,ΔE2 = k ,即:ΔE1 = ΔE2 ,而它們的方向是相反的,故在P點激發(fā)的合場強為零。

同理,其它各個相對的面元ΔS3和ΔS4 、ΔS5和ΔS6  激發(fā)的合場強均為零。原命題得證。

【模型變換】半徑為R的均勻帶電球面,電荷的面密度為σ,試求球心處的電場強度。

【解析】如圖7-6所示,在球面上的P處取一極小的面元ΔS ,它在球心O點激發(fā)的場強大小為

ΔE = k ,方向由P指向O點。

無窮多個這樣的面元激發(fā)的場強大小和ΔS激發(fā)的完全相同,但方向各不相同,它們矢量合成的效果怎樣呢?這里我們要大膽地預見——由于由于在x方向、y方向上的對稱性,Σ = Σ = 0 ,最后的ΣE = ΣEz ,所以先求

ΔEz = ΔEcosθ= k ,而且ΔScosθ為面元在xoy平面的投影,設為ΔS′

所以 ΣEz = ΣΔS′

 ΣΔS′= πR2 

【答案】E = kπσ ,方向垂直邊界線所在的平面。

〖學員思考〗如果這個半球面在yoz平面的兩邊均勻帶有異種電荷,面密度仍為σ,那么,球心處的場強又是多少?

〖推薦解法〗將半球面看成4個球面,每個球面在x、y、z三個方向上分量均為 kπσ,能夠?qū)ΨQ抵消的將是y、z兩個方向上的分量,因此ΣE = ΣEx …

〖答案〗大小為kπσ,方向沿x軸方向(由帶正電的一方指向帶負電的一方)。

【物理情形2】有一個均勻的帶電球體,球心在O點,半徑為R ,電荷體密度為ρ ,球體內(nèi)有一個球形空腔,空腔球心在O′點,半徑為R′,= a ,如圖7-7所示,試求空腔中各點的場強。

【模型分析】這里涉及兩個知識的應用:一是均勻帶電球體的場強定式(它也是來自疊加原理,這里具體用到的是球體內(nèi)部的結(jié)論,即“剝皮法則”),二是填補法。

將球體和空腔看成完整的帶正電的大球和帶負電(電荷體密度相等)的小球的集合,對于空腔中任意一點P ,設 = r1 , = r2 ,則大球激發(fā)的場強為

E1 = k = kρπr1 ,方向由O指向P

“小球”激發(fā)的場強為

E2 = k = kρπr2 ,方向由P指向O′

E1和E2的矢量合成遵從平行四邊形法則,ΣE的方向如圖。又由于矢量三角形PE1ΣE和空間位置三角形OP O′是相似的,ΣE的大小和方向就不難確定了。

【答案】恒為kρπa ,方向均沿O → O′,空腔里的電場是勻強電場。

〖學員思考〗如果在模型2中的OO′連線上O′一側(cè)距離O為b(b>R)的地方放一個電量為q的點電荷,它受到的電場力將為多大?

〖解說〗上面解法的按部就班應用…

〖答〗πkρq〔?〕。

二、電勢、電量與電場力的功

【物理情形1】如圖7-8所示,半徑為R的圓環(huán)均勻帶電,電荷線密度為λ,圓心在O點,過圓心跟環(huán)面垂直的軸線上有P點, = r ,以無窮遠為參考點,試求P點的電勢U

【模型分析】這是一個電勢標量疊加的簡單模型。先在圓環(huán)上取一個元段ΔL ,它在P點形成的電勢

ΔU = k

環(huán)共有段,各段在P點形成的電勢相同,而且它們是標量疊加。

【答案】UP = 

〖思考〗如果上題中知道的是環(huán)的總電量Q ,則UP的結(jié)論為多少?如果這個總電量的分布不是均勻的,結(jié)論會改變嗎?

〖答〗UP =  ;結(jié)論不會改變。

〖再思考〗將環(huán)換成半徑為R的薄球殼,總電量仍為Q ,試問:(1)當電量均勻分布時,球心電勢為多少?球內(nèi)(包括表面)各點電勢為多少?(2)當電量不均勻分布時,球心電勢為多少?球內(nèi)(包括表面)各點電勢為多少?

〖解說〗(1)球心電勢的求解從略;

球內(nèi)任一點的求解參看圖7-5

ΔU1 = k= k·= kσΔΩ

ΔU2 = kσΔΩ

它們代數(shù)疊加成 ΔU = ΔU1 + ΔU2 = kσΔΩ

而 r1 + r2 = 2Rcosα

所以 ΔU = 2RkσΔΩ

所有面元形成電勢的疊加 ΣU = 2RkσΣΔΩ

注意:一個完整球面的ΣΔΩ = 4π(單位:球面度sr),但作為對頂?shù)腻F角,ΣΔΩ只能是2π ,所以——

ΣU = 4πRkσ= k

(2)球心電勢的求解和〖思考〗相同;

球內(nèi)任一點的電勢求解可以從(1)問的求解過程得到結(jié)論的反證。

〖答〗(1)球心、球內(nèi)任一點的電勢均為k ;(2)球心電勢仍為k ,但其它各點的電勢將隨電量的分布情況的不同而不同(內(nèi)部不再是等勢體,球面不再是等勢面)。

【相關(guān)應用】如圖7-9所示,球形導體空腔內(nèi)、外壁的半徑分別為R1和R2 ,帶有凈電量+q ,現(xiàn)在其內(nèi)部距球心為r的地方放一個電量為+Q的點電荷,試求球心處的電勢。

【解析】由于靜電感應,球殼的內(nèi)、外壁形成兩個帶電球殼。球心電勢是兩個球殼形成電勢、點電荷形成電勢的合效果。

根據(jù)靜電感應的嘗試,內(nèi)壁的電荷量為-Q ,外壁的電荷量為+Q+q ,雖然內(nèi)壁的帶電是不均勻的,根據(jù)上面的結(jié)論,其在球心形成的電勢仍可以應用定式,所以…

【答案】Uo = k - k + k 。

〖反饋練習〗如圖7-10所示,兩個極薄的同心導體球殼A和B,半徑分別為RA和RB ,現(xiàn)讓A殼接地,而在B殼的外部距球心d的地方放一個電量為+q的點電荷。試求:(1)A球殼的感應電荷量;(2)外球殼的電勢。

〖解說〗這是一個更為復雜的靜電感應情形,B殼將形成圖示的感應電荷分布(但沒有凈電量),A殼的情形未畫出(有凈電量),它們的感應電荷分布都是不均勻的。

此外,我們還要用到一個重要的常識:接地導體(A殼)的電勢為零。但值得注意的是,這里的“為零”是一個合效果,它是點電荷q 、A殼、B殼(帶同樣電荷時)單獨存在時在A中形成的的電勢的代數(shù)和,所以,當我們以球心O點為對象,有

UO = k + k + k = 0

QB應指B球殼上的凈電荷量,故 QB = 0

所以 QA = -q

☆學員討論:A殼的各處電勢均為零,我們的方程能不能針對A殼表面上的某點去列?(答:不能,非均勻帶電球殼的球心以外的點不能應用定式!)

基于剛才的討論,求B的電勢時也只能求B的球心的電勢(獨立的B殼是等勢體,球心電勢即為所求)——

UB = k + k

〖答〗(1)QA = -q ;(2)UB = k(1-) 。

【物理情形2】圖7-11中,三根實線表示三根首尾相連的等長絕緣細棒,每根棒上的電荷分布情況與絕緣棒都換成導體棒時完全相同。點A是Δabc的中心,點B則與A相對bc棒對稱,且已測得它們的電勢分別為UA和UB 。試問:若將ab棒取走,A、B兩點的電勢將變?yōu)槎嗌伲?/p>

【模型分析】由于細棒上的電荷分布既不均勻、三根細棒也沒有構(gòu)成環(huán)形,故前面的定式不能直接應用。若用元段分割→疊加,也具有相當?shù)睦щy。所以這里介紹另一種求電勢的方法。

每根細棒的電荷分布雖然復雜,但相對各自的中點必然是對稱的,而且三根棒的總電量、分布情況彼此必然相同。這就意味著:①三棒對A點的電勢貢獻都相同(可設為U1);②ab棒、ac棒對B點的電勢貢獻相同(可設為U2);③bc棒對A、B兩點的貢獻相同(為U1)。

所以,取走ab前  3U1 = UA

                 2U2 + U1 = UB

取走ab后,因三棒是絕緣體,電荷分布不變,故電勢貢獻不變,所以

  UA′= 2U1

                 UB′= U1 + U2

【答案】UA′= UA ;UB′= UA + UB 。

〖模型變換〗正四面體盒子由彼此絕緣的四塊導體板構(gòu)成,各導體板帶電且電勢分別為U1 、U2 、U3和U4 ,則盒子中心點O的電勢U等于多少?

〖解說〗此處的四塊板子雖然位置相對O點具有對稱性,但電量各不相同,因此對O點的電勢貢獻也不相同,所以應該想一點辦法——

我們用“填補法”將電量不對稱的情形加以改觀:先將每一塊導體板復制三塊,作成一個正四面體盒子,然后將這四個盒子位置重合地放置——構(gòu)成一個有四層壁的新盒子。在這個新盒子中,每個壁的電量將是完全相同的(為原來四塊板的電量之和)、電勢也完全相同(為U1 + U2 + U3 + U4),新盒子表面就構(gòu)成了一個等勢面、整個盒子也是一個等勢體,故新盒子的中心電勢為

U′= U1 + U2 + U3 + U4 

最后回到原來的單層盒子,中心電勢必為 U =  U′

〖答〗U = (U1 + U2 + U3 + U4)。

☆學員討論:剛才的這種解題思想是否適用于“物理情形2”?(答:不行,因為三角形各邊上電勢雖然相等,但中點的電勢和邊上的并不相等。)

〖反饋練習〗電荷q均勻分布在半球面ACB上,球面半徑為R ,CD為通過半球頂點C和球心O的軸線,如圖7-12所示。P、Q為CD軸線上相對O點對稱的兩點,已知P點的電勢為UP ,試求Q點的電勢UQ 。

〖解說〗這又是一個填補法的應用。將半球面補成完整球面,并令右邊內(nèi)、外層均勻地帶上電量為q的電荷,如圖7-12所示。

從電量的角度看,右半球面可以看作不存在,故這時P、Q的電勢不會有任何改變。

而換一個角度看,P、Q的電勢可以看成是兩者的疊加:①帶電量為2q的完整球面;②帶電量為-q的半球面。

考查P點,UP = k + U半球面

其中 U半球面顯然和為填補時Q點的電勢大小相等、符號相反,即 U半球面= -UQ 

以上的兩個關(guān)系已經(jīng)足以解題了。

〖答〗UQ = k - UP 。

【物理情形3】如圖7-13所示,A、B兩點相距2L ,圓弧是以B為圓心、L為半徑的半圓。A處放有電量為q的電荷,B處放有電量為-q的點電荷。試問:(1)將單位正電荷從O點沿移到D點,電場力對它做了多少功?(2)將單位負電荷從D點沿AB的延長線移到無窮遠處去,電場力對它做多少功?

【模型分析】電勢疊加和關(guān)系WAB = q(UA - UB)= qUAB的基本應用。

UO = k + k = 0

UD = k + k = -

U = 0

再用功與電勢的關(guān)系即可。

【答案】(1);(2)。 

【相關(guān)應用】在不計重力空間,有A、B兩個帶電小球,電量分別為q1和q2 ,質(zhì)量分別為m1和m2 ,被固定在相距L的兩點。試問:(1)若解除A球的固定,它能獲得的最大動能是多少?(2)若同時解除兩球的固定,它們各自的獲得的最大動能是多少?(3)未解除固定時,這個系統(tǒng)的靜電勢能是多少?

【解說】第(1)問甚間;第(2)問在能量方面類比反沖裝置的能量計算,另啟用動量守恒關(guān)系;第(3)問是在前兩問基礎上得出的必然結(jié)論…(這里就回到了一個基本的觀念斧正:勢能是屬于場和場中物體的系統(tǒng),而非單純屬于場中物體——這在過去一直是被忽視的。在兩個點電荷的環(huán)境中,我們通常說“兩個點電荷的勢能”是多少。)

【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 

〖思考〗設三個點電荷的電量分別為q1 、q2和q3 ,兩兩相距為r12 、r23和r31 ,則這個點電荷系統(tǒng)的靜電勢能是多少?

〖解〗略。

〖答〗k(++)。

〖反饋應用〗如圖7-14所示,三個帶同種電荷的相同金屬小球,每個球的質(zhì)量均為m 、電量均為q ,用長度為L的三根絕緣輕繩連接著,系統(tǒng)放在光滑、絕緣的水平面上,F(xiàn)將其中的一根繩子剪斷,三個球?qū)㈤_始運動起來,試求中間這個小球的最大速度。

〖解〗設剪斷的是1、3之間的繩子,動力學分析易知,2球獲得最大動能時,1、2之間的繩子與2、3之間的繩子剛好應該在一條直線上。而且由動量守恒知,三球不可能有沿繩子方向的速度。設2球的速度為v ,1球和3球的速度為v′,則

動量關(guān)系 mv + 2m v′= 0

能量關(guān)系 3k = 2 k + k + mv2 + 2m

解以上兩式即可的v值。

〖答〗v = q 。

三、電場中的導體和電介質(zhì)

【物理情形】兩塊平行放置的很大的金屬薄板A和B,面積都是S ,間距為d(d遠小于金屬板的線度),已知A板帶凈電量+Q1 ,B板帶盡電量+Q2 ,且Q2<Q1 ,試求:(1)兩板內(nèi)外表面的電量分別是多少;(2)空間各處的場強;(3)兩板間的電勢差。

【模型分析】由于靜電感應,A、B兩板的四個平面的電量將呈現(xiàn)一定規(guī)律的分布(金屬板雖然很薄,但內(nèi)部合場強為零的結(jié)論還是存在的);這里應注意金屬板“很大”的前提條件,它事實上是指物理無窮大,因此,可以應用無限大平板的場強定式。

為方便解題,做圖7-15,忽略邊緣效應,四個面的電荷分布應是均勻的,設四個面的電荷面密度分別為σ1 、σ2 、σ3和σ4 ,顯然

(σ1 + σ2)S = Q1 

(σ3 + σ4)S = Q2 

A板內(nèi)部空間場強為零,有 2πk(σ1 ? σ2 ? σ3 ? σ4)= 0

A板內(nèi)部空間場強為零,有 2πk(σ1 + σ2 + σ3 ? σ4)= 0

解以上四式易得 σ1 = σ4 = 

               σ2 = ?σ3 = 

有了四個面的電荷密度,Ⅰ、Ⅱ、Ⅲ空間的場強就好求了〔如E =2πk(σ1 + σ2 ? σ3 ? σ4)= 2πk〕。

最后,UAB = Ed

【答案】(1)A板外側(cè)電量、A板內(nèi)側(cè)電量,B板內(nèi)側(cè)電量?、B板外側(cè)電量;(2)A板外側(cè)空間場強2πk,方向垂直A板向外,A、B板之間空間場強2πk,方向由A垂直指向B,B板外側(cè)空間場強2πk,方向垂直B板向外;(3)A、B兩板的電勢差為2πkd,A板電勢高。

〖學員思考〗如果兩板帶等量異號的凈電荷,兩板的外側(cè)空間場強等于多少?(答:為零。)

〖學員討論〗(原模型中)作為一個電容器,它的“電量”是多少(答:)?如果在板間充滿相對介電常數(shù)為εr的電介質(zhì),是否會影響四個面的電荷分布(答:不會)?是否會影響三個空間的場強(答:只會影響Ⅱ空間的場強)?

〖學員討論〗(原模型中)我們是否可以求出A、B兩板之間的靜電力?〔答:可以;以A為對象,外側(cè)受力·(方向相左),內(nèi)側(cè)受力·(方向向右),它們合成即可,結(jié)論為F = Q1Q2 ,排斥力!

【模型變換】如圖7-16所示,一平行板電容器,極板面積為S ,其上半部為真空,而下半部充滿相對介電常數(shù)為εr的均勻電介質(zhì),當兩極板分別帶上+Q和?Q的電量后,試求:(1)板上自由電荷的分布;(2)兩板之間的場強;(3)介質(zhì)表面的極化電荷。

【解說】電介質(zhì)的充入雖然不能改變內(nèi)表面的電量總數(shù),但由于改變了場強,故對電荷的分布情況肯定有影響。設真空部分電量為Q1 ,介質(zhì)部分電量為Q2 ,顯然有

Q1 + Q2 = Q

兩板分別為等勢體,將電容器看成上下兩個電容器的并聯(lián),必有

U1 = U2   =  ,即  = 

解以上兩式即可得Q1和Q2 。

場強可以根據(jù)E = 關(guān)系求解,比較常規(guī)(上下部分的場強相等)。

上下部分的電量是不等的,但場強居然相等,這怎么解釋?從公式的角度看,E = 2πkσ(單面平板),當k 、σ同時改變,可以保持E不變,但這是一種結(jié)論所展示的表象。從內(nèi)在的角度看,k的改變正是由于極化電荷的出現(xiàn)所致,也就是說,極化電荷的存在相當于在真空中形成了一個新的電場,正是這個電場與自由電荷(在真空中)形成的電場疊加成為E2 ,所以

E2 = 4πk(σ ? σ′)= 4πk( ? 

請注意:①這里的σ′和Q′是指極化電荷的面密度和總量;② E = 4πkσ的關(guān)系是由兩個帶電面疊加的合效果。

【答案】(1)真空部分的電量為Q ,介質(zhì)部分的電量為Q ;(2)整個空間的場強均為 ;(3)Q 。

〖思考應用〗一個帶電量為Q的金屬小球,周圍充滿相對介電常數(shù)為εr的均勻電介質(zhì),試求與與導體表面接觸的介質(zhì)表面的極化電荷量。

〖解〗略。

〖答〗Q′= Q 。

四、電容器的相關(guān)計算

【物理情形1】由許多個電容為C的電容器組成一個如圖7-17所示的多級網(wǎng)絡,試問:(1)在最后一級的右邊并聯(lián)一個多大電容C′,可使整個網(wǎng)絡的A、B兩端電容也為C′?(2)不接C′,但無限地增加網(wǎng)絡的級數(shù),整個網(wǎng)絡A、B兩端的總電容是多少?

【模型分析】這是一個練習電容電路簡化基本事例。

第(1)問中,未給出具體級數(shù),一般結(jié)論應適用特殊情形:令級數(shù)為1 ,于是

 +  =  解C′即可。

第(2)問中,因為“無限”,所以“無限加一級后仍為無限”,不難得出方程

 +  = 

【答案】(1)C ;(2)C 。

【相關(guān)模型】在圖7-18所示的電路中,已知C1 = C2 = C3 = C9 = 1μF ,C4 = C5 = C6 = C7 = 2μF ,C8 = C10 = 3μF ,試求A、B之間的等效電容。

【解說】對于既非串聯(lián)也非并聯(lián)的電路,需要用到一種“Δ→Y型變換”,參見圖7-19,根據(jù)三個端點之間的電容等效,容易得出定式——

Δ→Y型:Ca = 

          Cb = 

          Cc = 

Y→Δ型:C1 = 

         C2 = 

         C3 = 

有了這樣的定式后,我們便可以進行如圖7-20所示的四步電路簡化(為了方便,電容不宜引進新的符號表達,而是直接將變換后的量值標示在圖中)——

【答】約2.23μF 。

【物理情形2】如圖7-21所示的電路中,三個電容器完全相同,電源電動勢ε1 = 3.0V ,ε2 = 4.5V,開關(guān)K1和K2接通前電容器均未帶電,試求K1和K2接通后三個電容器的電壓Uao 、Ubo和Uco各為多少。

【解說】這是一個考查電容器電路的基本習題,解題的關(guān)鍵是要抓與o相連的三塊極板(俗稱“孤島”)的總電量為零。

電量關(guān)系:++= 0

電勢關(guān)系:ε1 = Uao + Uob = Uao ? Ubo 

          ε2 = Ubo + Uoc = Ubo ? Uco 

解以上三式即可。

【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = ?4.0V 。

【伸展應用】如圖7-22所示,由n個單元組成的電容器網(wǎng)絡,每一個單元由三個電容器連接而成,其中有兩個的電容為3C ,另一個的電容為3C 。以a、b為網(wǎng)絡的輸入端,a′、b′為輸出端,今在a、b間加一個恒定電壓U ,而在a′b′間接一個電容為C的電容器,試求:(1)從第k單元輸入端算起,后面所有電容器儲存的總電能;(2)若把第一單元輸出端與后面斷開,再除去電源,并把它的輸入端短路,則這個單元的三個電容器儲存的總電能是多少?

【解說】這是一個結(jié)合網(wǎng)絡計算和“孤島現(xiàn)象”的典型事例。

(1)類似“物理情形1”的計算,可得 C = Ck = C

所以,從輸入端算起,第k單元后的電壓的經(jīng)驗公式為 Uk = 

再算能量儲存就不難了。

(2)斷開前,可以算出第一單元的三個電容器、以及后面“系統(tǒng)”的電量分配如圖7-23中的左圖所示。這時,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤島”。此后,電容器的相互充電過程(C3類比為“電源”)滿足——

電量關(guān)系:Q1′= Q3

          Q2′+ Q3′= 

電勢關(guān)系: = 

從以上三式解得 Q1′= Q3′=  ,Q2′=  ,這樣系統(tǒng)的儲能就可以用得出了。

【答】(1)Ek = ;(2) 。

〖學員思考〗圖7-23展示的過程中,始末狀態(tài)的電容器儲能是否一樣?(答:不一樣;在相互充電的過程中,導線消耗的焦耳熱已不可忽略。)

☆第七部分完☆

查看答案和解析>>


同步練習冊答案