一艘輪船自西向東航行.在A處測得東偏北21.3°方向有一座小島C.繼續(xù)向東航行60海里到達(dá)B處.測得小島C此時(shí)在輪船的東偏北63.5°方向上.之后.輪船繼續(xù)向東航行多少海里.距離小島C最近? 查看更多

 

題目列表(包括答案和解析)

一艘輪船自西向東航行,在A處測得北偏東60°方向有一座小島C,繼續(xù)向東航行60海里到達(dá)B處,測得小島C此時(shí)在輪船的北偏東45°方向上之后,輪船繼續(xù)向東航行多少海里,距離小島C最近?(結(jié)果保留根號)

查看答案和解析>>

一艘輪船自西向東航行,在A處測得東偏北21.3°方向有一座小島C,繼續(xù)向東航行60海里到達(dá)B處,測得小島C此時(shí)在輪船的東偏北63.5°方向上.之后,輪船繼續(xù)向東航行多少海里,距離小島C最近?(參考數(shù)據(jù):sin21.3°≈
9
25
,tan21.3°≈
2
5
,sin63.5°≈
9
10
,tan63.5°≈2)
精英家教網(wǎng)

查看答案和解析>>

精英家教網(wǎng)一艘輪船自西向東航行,在A處測得北偏東60°方向有一座小島F,繼續(xù)向東航行80海里到達(dá)C處,測得小島F此時(shí)在輪船的北偏西30°方向上.輪船在整個(gè)航行過程中,距離小島F最近是多少海里?(結(jié)果保留根號)

查看答案和解析>>

一艘輪船自西向東航行,在A處測得北偏東60°方向有一座小島C,繼續(xù)向東航行60海里到達(dá)B處,測得小島C此時(shí)在輪船的北偏東45°方向上之后,輪船繼續(xù)向東航行多少海里,距離小島C最近?(結(jié)果保留根號)

查看答案和解析>>

一艘輪船自西向東航行,在A處測得東偏北21.3°方向有一座小島C,繼續(xù)向東航行60海里到達(dá)B處,測得小島C此時(shí)在輪船的東偏北63.5°方向上.之后,輪船繼續(xù)向東航行多少海里,距離小島C最近?(參考數(shù)據(jù):sin21.3°≈數(shù)學(xué)公式,tan21.3°≈數(shù)學(xué)公式,sin63.5°≈數(shù)學(xué)公式,tan63.5°≈2)

查看答案和解析>>

說明:

1.如果考生的解法與本解法不同,可參照本評分標(biāo)準(zhǔn)制定相應(yīng)評分細(xì)則.

2.當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤,影響了后繼部分時(shí),如果這一步以后的解答未改變這道題的內(nèi)容和難度,可視影響程度決定后面部分的給分,但不得超過后面部分應(yīng)給分?jǐn)?shù)的一半;如果這一步以后的解答有較嚴(yán)重的錯(cuò)誤,就不給分.

3.為閱卷方便,本解答中的推算步驟寫得較為詳細(xì),但允許考生在解答過程中,合理省略非關(guān)鍵性的推算步驟.

4.解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

一、選擇題(本題滿分21分,共有7道小題,每小題3分)

題號

1

2

3

4

5

6

7

答案

D

B

A

C

D

A

C

二、填空題(本題滿分21分,共有7道小題,每小題3分)

題號

8

9

10

11

答案

1

題號

12

13

14

答案

16

(8,3)

4

32

 

三、作圖題(本題滿分6分)

15.⑴ 正確作出圖形,并做答.                     …………………………3′

⑵ 132 .                                     …………………………6′

四、解答題(本題滿分72分,共有9道小題)

16.(本小題滿分6分)

  • <mark id="4mgz6"></mark>

    ①×3,得 6x+3y=15.   ③

    ②+③,得 7x=21,

     x=3.                       …………………………3′

    把x=3代入①,得2×3+y=5,

                       y=-1.

    ∴原方程組的解是                 ………………………………6′

    17.(本小題滿分6分)

    解:⑴ 正確補(bǔ)全頻數(shù)分布直方圖;            ………………………………2′

    ⑵ 樣本的中位數(shù)在155~160cm的范圍內(nèi); ………………………………4′

    ⑶ 八年級.                            ………………………………6′

    18.(本小題滿分6分)

    解:⑴  (元);  …………………………4′

    ⑵  ∵11.875元>10元,  

            ∴選擇轉(zhuǎn)轉(zhuǎn)盤.                       ……………………………6′

    (如果學(xué)生選擇直接獲得購物券,只要回答合理即可同樣得分)

    19.(本小題滿分6分)

    解:過C作AB的垂線,交直線AB于點(diǎn)D,得到Rt△ACD與Rt△BCD.

    設(shè)BD=x海里,

    在Rt△BCD中,tan∠CBD=,

    ∴CD=x ?tan63.5°.

    在Rt△ACD中,AD=AB+BD=(60+x)海里,tan∠A=,

    ∴CD=( 60+x ) ?tan21.3°.                 ……………………………4′

    ∴x?tan63.5°=(60+x)?tan21.3°,即

    解得,x=15.

    答:輪船繼續(xù)向東航行15海里,距離小島C最近. …………………………6′

    20.(本小題滿分8分)

    解:⑴ 設(shè)生產(chǎn)A種飲料x瓶,根據(jù)題意得:

     

     

     

    解這個(gè)不等式組,得20≤x≤40.

    因?yàn)槠渲姓麛?shù)解共有21個(gè),

    所以符合題意的生產(chǎn)方案有21種.       ……………………………4′

    ⑵ 根據(jù)題意,得 y=2.6x+2.8(100-x).

     整理,得 y=-0.2x+280.       ……………………………6′

    ∵k=-0.2<0,

    ∴y隨x的增大而減小.

    ∴當(dāng)x=40時(shí)成本總額最低.                …………………………8′

    21.(本小題滿分8分)

    證明:⑴ 由折疊可知:∠D=∠D′,CD=AD′,∠C=∠D′AE.

    ∵四邊形ABCD是平行四邊形,

    ∴∠B=∠D,AB=CD,∠C=∠BAD.………2′

    ∴∠B=∠D′,AB=AD′,

    ∠D′AE=∠BAD,即∠1+∠2=∠2+∠3.

    ∴∠1=∠3.

    ∴△ABE ≌△A D′F.   ……………4′

    ⑵ 四邊形AECF是菱形.

    由折疊可知:AE=EC,∠4=∠5.

    ∵四邊形ABCD是平行四邊形,∴AD∥BC.

    ∴∠5=∠6.∴∠4=∠6.∴AF=AE.                 

    ∵AE=EC,  ∴AF=EC.

    又∵AF∥EC,                 

    ∴四邊形AECF是平行四邊形.

    ∵AF=AE,

    ∴四邊形AECF是菱形.                 ……………………………8′

    22.(本小題滿分10分)

    解:⑴ y=(x-50)∙ w

    =(x-50) ∙ (-2x+240)

    =-2x2+340x-12000,

    ∴y與x的關(guān)系式為:y=-2x2+340x-12000.   ……………………3′

    ⑵ y=-2x2+340x-12000

    =-2 (x-85) 2+2450,

    ∴當(dāng)x=85時(shí),y的值最大.                 ………………………6′

    ⑶ 當(dāng)y=2250時(shí),可得方程。2 (x-85 )2 +2450=2250.

    解這個(gè)方程,得  x1=75,x2=95.            ………………………8′

    根據(jù)題意,x2=95不合題意應(yīng)舍去.

    ∴當(dāng)銷售單價(jià)為75元時(shí),可獲得銷售利潤2250元. …………………10′                

    23.(本小題滿分10分)

    解:⑵ ∵AP=AD,△ABP和△ABD的高相等,

    ∴SABPSABD

    又∵PD=AD-AP=AD,△CDP和△CDA的高相等,

    ∴SCDPSCDA

    ∴SPBC =S四邊形ABCD-SABP-SCDP

    =S四邊形ABCDSABDSCDA

    =S四邊形ABCD(S四邊形ABCD-SDBC)-(S四邊形ABCD-SABC)

    SDBCSABC

    ∴SPBCSDBCSABC                         ……………………………4′

    ⑶ SPBCSDBCSABC ;              ……………………………5′

    ⑷ SPBCSDBCSABC

    ∵AP=AD,△ABP和△ABD的高相等,

    ∴SABPSABD

    又∵PD=AD-AP=AD,△CDP和△CDA的高相等,

    ∴SCDPSCDA

    ∴SPBC =S四邊形ABCD-SABP-SCDP

    =S四邊形ABCDSABDSCDA

    =S四邊形ABCD(S四邊形ABCD-SDBC)-(S四邊形ABCD-SABC)

    SDBCSABC

    ∴SPBCSDBCSABC .             ……………………………8′

    問題解決: SPBCSDBCSABC .      ……………………………10′

    24.(本小題滿分12分)

    解:⑴ 根據(jù)題意:AP=t cm,BQ=t cm.

    △ABC中,AB=BC=3cm,∠B=60°,

    ∴BP=(3-t ) cm.

    △PBQ中,BP=3-t,BQ=t,

    若△PBQ是直角三角形,則∠BQP=90°或∠BPQ=90°.

    當(dāng)∠BQP=90°時(shí),BQ=BP.

    即t=(3-t ),

    t=1 (秒).

          當(dāng)∠BPQ=90°時(shí),BP=BQ.

    3-t=t,

    t=2 (秒).

    答:當(dāng)t=1秒或t=2秒時(shí),△PBQ是直角三角形.   …………………4′

    ⑵ 過P作PM⊥BC于M .

    Rt△BPM中,sin∠B=

    ∴PM=PB?sin∠B=(3-t ).

    ∴S△PBQBQ?PM=? t ?(3-t ).

    ∴y=S△ABC-S△PBQ

    ×32×? t ?(3-t )

           =. 

    ∴y與t的關(guān)系式為: y=.   …………………6′

    假設(shè)存在某一時(shí)刻t,使得四邊形APQC的面積是△ABC面積的,

    則S四邊形APQCSABC

    ××32×

    ∴t 2-3 t+3=0.

    ∵(-3) 2-4×1×3<0,

    ∴方程無解.

    ∴無論t取何值,四邊形APQC的面積都不可能是△ABC面積的.……8′

    ⑶ 在Rt△PQM中,

    MQ=

    MQ 2+PM 2=PQ 2

    ∴x2=[(1-t ) ]2+[(3-t ) ]2

            ==3t2-9t+9.         ……………………………10′

    ∴t2-3t=

    ∵y=

    ∴y=.                  

    ∴y與x的關(guān)系式為:y=.       ……………………………12′

     


    同步練習(xí)冊答案

    <bdo id="4mgz6"><center id="4mgz6"></center></bdo>
    <fieldset id="4mgz6"><optgroup id="4mgz6"></optgroup></fieldset>