解得 k1=-6.b=240. 查看更多

 

題目列表(包括答案和解析)

閱讀下面材料:解答問題
為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個(gè)整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.
當(dāng)y=1時(shí),x2-1=1,∴x2=2,∴x=±;當(dāng)y=4時(shí),x2-1=4,∴x2=5,∴x=±,
故原方程的解為  x1=,x2=-,x3=,x4=-.
上述解題方法叫做換元法;
請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

查看答案和解析>>

閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個(gè)整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.

當(dāng)y=1時(shí),x2-1=1,∴x2=2,∴x=±;當(dāng)y=4時(shí),x2-1=4,∴x2=5,∴x=±,

故原方程的解為  x1=,x2=-,x3=,x4=-.

上述解題方法叫做換元法;

請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0  

 

查看答案和解析>>

(10分)閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個(gè)整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.

當(dāng)y=1時(shí),x2-1=1,∴x2=2,∴x=±;當(dāng)y=4時(shí),x2-1=4,∴x2=5,∴x=±,

故原方程的解為  x1=,x2=-,x3=,x4=-.

上述解題方法叫做換元法;

請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

 

查看答案和解析>>

(10分)閱讀下面材料:解答問題
為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個(gè)整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.
當(dāng)y=1時(shí),x2-1=1,∴x2=2,∴x=±;當(dāng)y=4時(shí),x2-1=4,∴x2=5,∴x=±,
故原方程的解為  x1=,x2=-,x3=,x4=-.
上述解題方法叫做換元法;
請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

查看答案和解析>>

(10分)閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個(gè)整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.

當(dāng)y=1時(shí),x2-1=1,∴x2=2,∴x=±;當(dāng)y=4時(shí),x2-1=4,∴x2=5,∴x=±,

故原方程的解為  x1=,x2=-,x3=,x4=-.

上述解題方法叫做換元法;

請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

 

查看答案和解析>>


同步練習(xí)冊答案