拋物線的對稱軸l的方程是:= 查看更多

 

題目列表(包括答案和解析)

已知:關(guān)于x的一元二次方程ax2+bx+c=3的一個根為x1=2,且二次函數(shù)y=ax2+bx+c的對稱軸是直線x=2,則拋物線的頂點坐標(biāo)為


  1. A.
    (2,-3)
  2. B.
    (2,1)
  3. C.
    (2,3)
  4. D.
    (3,2)

查看答案和解析>>

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實踐一應(yīng)用——探究的過程:

(1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測量,測得一隧道的路面寬為10 m.隧道頂部最高處距地面6.25 m,并畫出了隧道截面圖.建立了如圖②所示的直角坐標(biāo)系.請你求出拋物線的解析式.

(2)應(yīng)用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5 m.為了確保安全.問該隧道能否讓最寬3 m.最高3.5 m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?

(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識,他們借助上述拋物線模型塑.提出了以下兩個問題,請予解答:

Ⅰ.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點C、D落在拋物線上.頂點A、B落在x軸上.設(shè)矩形ABCD的周長為l,求l的最大值.

Ⅱ.如圖④,過原點作一條y=x的直線OM,交拋物線于點M.交拋物線對稱軸于點N,P為直線OM上一動點,過P點作x軸的垂線交拋物線于點Q.問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

已知二次函數(shù)y=a(x2-6x+8)(a>0)的圖象與x軸分別交于點A、B,與y軸交于點C.點D是拋物線的頂點.

(1)如圖①,連接AC,將△OAC沿直線AC翻折,若點O的對應(yīng)點O'恰好落在該拋物線的對稱軸上,求實數(shù)a的值;

(2)如圖②,在正方形EFGH中,點EF的坐標(biāo)分別是(4,4)、(4,3),邊HG位于邊EF的右側(cè).小林同學(xué)經(jīng)過探索后發(fā)現(xiàn)了一個正確的命題:“若點P是邊EH或邊HG上的任意一點,則四條線段PAPB、PC、PD不能與任何一個平行四邊形的四條邊對應(yīng)相等(即這四條線段不能構(gòu)成平行四邊形).”若點P是邊EF或邊FG上的任意一點,剛才的結(jié)論是否也成立?請你積極探索,并寫出探索過程;

(3)如圖②,當(dāng)點P在拋物線對稱軸上時,設(shè)點P的縱坐標(biāo)t是大于3的常數(shù),試問:是否存在一個正數(shù)a,使得四條線段PAPB、PCPD與一個平行四邊形的四條邊對應(yīng)相等(即這四條線段能構(gòu)成平行四邊形)?請說明理由.

查看答案和解析>>

二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)值y的部分對應(yīng)值如下所示,相應(yīng)圖象如圖所示,結(jié)合表格和圖象回答下列問題:

 

 

 

1.拋物線y=ax2+bx+c的對稱軸是直線x=          ;

2.方程ax2+bx+c=0的兩根是x1=          ,x2=           ;

3.求出二次函數(shù)y=ax2+bx+c的解析式及m的值;

4.求當(dāng)方程ax2+bx+c=k有解時k的取值范圍.(結(jié)合圖形直接寫出答案)

 

查看答案和解析>>

二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)值y的部分對應(yīng)值如下所示,相應(yīng)圖象如圖所示,結(jié)合表格和圖象回答下列問題:

 

 

 

1.拋物線y=ax2+bx+c的對稱軸是直線x=          ;

2.方程ax2+bx+c=0的兩根是x1=           ,x2=            ;

3.求出二次函數(shù)y=ax2+bx+c的解析式及m的值;

4.求當(dāng)方程ax2+bx+c=k有解時k的取值范圍.(結(jié)合圖形直接寫出答案)

 

查看答案和解析>>


同步練習(xí)冊答案