題目列表(包括答案和解析)
1+cosx-sinx |
1-sinx-cosx |
1-cosx-sinx |
1-sinx+cosx |
x |
2 |
1+tan2
| ||
sinx |
1+cosx-sinx |
1-sinx-cosx |
1-cosx-sinx |
1-sinx+cosx |
x |
2 |
1+tan2
| ||
sinx |
已知,且.
(1)求的值;
(2)求的值.
【解析】本試題主要考查了二項式定理的運用,以及系數(shù)求和的賦值思想的運用。第一問中,因為,所以,可得,第二問中,因為,所以,所以,利用組合數(shù)性質(zhì)可知。
解:(1)因為,所以, ……3分
化簡可得,且,解得. …………6分
(2),所以,
所以,
(08年永定一中二模理)我們把平面內(nèi)與直線的方向向量垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動點的軌跡方程的方法,可以求出過點且法向量為(點法式)方程為,化簡后得.類比以上求法,在空間直角坐標(biāo)系中,經(jīng)過點,且法向量為的平面(點法式)方程為_______________(請寫出化簡后的結(jié)果).
一、選擇題
1―5 CADBA 6―10 CBABD 11―12 CC
二、填空題
13.(理)(文)(―1,1) 14. 15.(理)18(文)(1,0)
16.①③
三、解答題
17.解:(1)由題意得 ………………2分
(2)由可知A、B都是銳角, …………7分
這時三角形為有一頂角為120°的等腰三角形 …………12分
18.(理)解:(1)ξ的所有可能的取值為0,1,2,3。 ………………2分
(2) ………………12分
(文)解:(1); ………………6分
(2)因為
…………10分
所以 …………12分
19.解:(1), ………………1分
依題意知, ………………3分
(2)令 …………4分
…………5分
所以,…………7分
(3)由上可知
①當(dāng)恒成立,
必須且只須, …………8分
,
則 ………………9分
②當(dāng)……10分
要使當(dāng)
綜上所述,t的取值范圍是 ………………12分
20.解法一:(1)取BB1的中點D,連CD、AD,則∠ACD為所求!1分
(2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,連EE1,
則AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。
因為A1B1//AB,所以A1B1//平面PAB。則只需求點E1到平面PAB的距離。
作E1H⊥EP于H,則E1H⊥平面PAB,則E1H即為所求距離。 …………6分
求得 …………8分
方法二:設(shè)B1到平面PAB的距離為h,則由
得 ………………8分
(3)設(shè)平面PAB與平面PA1B1的交線為l,由(2)知,A1B1//平面PAB,
則A1B1//l,因為AB⊥面CC1E1E,則l⊥面CC1E1E,
所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分
要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。 ………………10分
在矩形CEE1C1中,
解得
|