題目列表(包括答案和解析)
(本小題滿分12分)
(理)袋中有同樣的球5個(gè),其中3個(gè)紅色,2個(gè)黃色,現(xiàn)從中隨機(jī)且不放回地摸球,每次摸1個(gè),當(dāng)兩種顏色的球都被摸到時(shí),即停止摸球,記隨機(jī)變量ξ為此時(shí)已摸球的次數(shù),求:
(1)隨機(jī)變量ξ的概率分布; (9分)
(2)隨機(jī)變量ξ的數(shù)學(xué)期望與方差. (3分)
(本小題滿分12分)口袋里裝有大小相同的卡片八張,其中三張標(biāo)有數(shù)字1,三張標(biāo)有數(shù)字2,二張標(biāo)有數(shù)字3,第一次從口袋里任意抽取一張,放回口袋后第二次再任意抽取一張,記第一次與第二次取到卡片上數(shù)字之和為ξ.(1)ξ為何值時(shí),其發(fā)生的概率最大?說明理由.(2)求隨機(jī)變量ξ的期望Eξ.
(本小題滿分12分)袋子中有質(zhì)地、大小完全相同的4個(gè)球,編號分別為1,2,3,4.甲、乙兩人玩一種游戲:甲先摸出一個(gè)球,記下編號,放回后乙再摸一個(gè)球,記下編號,若兩個(gè)編號的和為奇數(shù)算甲贏,否則算乙贏.記基本事件為,其中分別為甲、乙摸到的球的編號。
(1)列舉出所有的基本事件,并求甲贏且編號的和為5的事件發(fā)生的概率;
(2)比較甲勝的概率與乙勝的概率,并說明這種游戲規(guī)則是否公平。(無詳細(xì)解答過程,不給分)
(3) 如果請你猜這兩球的號碼之和,猜中有獎(jiǎng).猜什么數(shù)獲獎(jiǎng)的可能性大?說明理由.
(本小題滿分12分)
口袋里裝有大小相同的卡片八張,其中三張標(biāo)有數(shù)字1,三張標(biāo)有數(shù)學(xué)2,二張標(biāo)有數(shù)字3,第一次從口袋里任里任意抽取一張,放回口袋里后第二次再任意抽取一張,記第一次與第二次取到卡片上數(shù)字這和為
(Ⅰ)為何值時(shí),其發(fā)生的概率最大?說明理由;
(Ⅱ)求隨機(jī)變量的期望
一、選擇題
1―5 CADBA 6―10 CBABD 11―12 CC
二、填空題
13.(理)(文)(―1,1) 14. 15.(理)18(文)(1,0)
16.①③
三、解答題
17.解:(1)由題意得 ………………2分
(2)由可知A、B都是銳角, …………7分
這時(shí)三角形為有一頂角為120°的等腰三角形 …………12分
18.(理)解:(1)ξ的所有可能的取值為0,1,2,3。 ………………2分
(2) ………………12分
(文)解:(1); ………………6分
(2)因?yàn)?sub>
…………10分
所以 …………12分
19.解:(1), ………………1分
依題意知, ………………3分
(2)令 …………4分
…………5分
所以,…………7分
(3)由上可知
①當(dāng)恒成立,
必須且只須, …………8分
,
則 ………………9分
②當(dāng)……10分
要使當(dāng)
綜上所述,t的取值范圍是 ………………12分
20.解法一:(1)取BB1的中點(diǎn)D,連CD、AD,則∠ACD為所求!1分
(2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,連EE1,
則AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。
因?yàn)锳1B1//AB,所以A1B1//平面PAB。則只需求點(diǎn)E1到平面PAB的距離。
作E1H⊥EP于H,則E1H⊥平面PAB,則E1H即為所求距離。 …………6分
求得 …………8分
方法二:設(shè)B1到平面PAB的距離為h,則由
得 ………………8分
(3)設(shè)平面PAB與平面PA1B1的交線為l,由(2)知,A1B1//平面PAB,
則A1B1//l,因?yàn)锳B⊥面CC1E1E,則l⊥面CC1E1E,
所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分
要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。 ………………10分
在矩形CEE1C1中,
解得
|