樣方法抽樣.若從月收入[3000.3500(元)段中抽取了30人.則在為20000人中共抽取的人數為 A.200 B.100 C.20000 D.40 查看更多

 

題目列表(包括答案和解析)

一個社會調查機構就某地居民的月收入調查了20000人,并根據所得數據畫出了樣本頻率分布直方圖.為了分析居民的收入與年齡、學歷、職業(yè)等方面的關系,按月收入用分層抽樣方法抽樣,若從月收入[3000,3500)(元)段中抽取了30人.則在這20000人中共抽取的人數為(  )
A.200B.100C.20000D.40
精英家教網

查看答案和解析>>

一個社會調查機構就某地居民的月收入調查了20000人,并根據所得數據畫出了樣本頻率分布直方圖.為了分析居民的收入與年齡、學歷、職業(yè)等方面的關系,按月收入用分層抽樣方法抽樣,若從月收入[3000,3500)(元)段中抽取了30人.則在這20000人中共抽取的人數為( )

A.200
B.100
C.20000
D.40

查看答案和解析>>

一個社會調查機構就某地居民的月收入調查20000人,并根據所得數據畫出了樣本頻率分布直方圖,為了分析居民的收入與年齡、學歷、職業(yè)等方面的關系,按月收入用分層抽樣方法抽樣,若從月收入[3000,3500)(元)段中抽取了30人,則在這20000人中共抽取的人數為
[     ]
A.200
B.100
C.20000
D.40

查看答案和解析>>

為征求個人所得稅修改建議,某機構對居民的月收入調查了10000人,并根據所得數據畫了樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在[1000,1500)).
(I)求居民月收入在[3000,4000)的頻率;
(II)為了分析居民的收入與年齡、職業(yè)等方面的關系,必須按月收入再從這10000人中用分層抽樣方法抽出100人作進一步分析,設月收入在[3500,4000)的這段應抽人數為m,求m的值.
(III)若從(II)中被抽取的m人中再選派兩人參加一項慈善活動,求其中的甲、乙兩人至少有一個被選中的概率.

查看答案和解析>>

為征求個人所得稅修改建議,某機構對居民的月收入調查了10000人,并根據所得數據畫了樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在[1000,1500)).
(I)求居民月收入在[3000,4000)的頻率;
(II)為了分析居民的收入與年齡、職業(yè)等方面的關系,必須按月收入再從這10000人中用分層抽樣方法抽出100人作進一步分析,設月收入在[3500,4000)的這段應抽人數為m,求m的值.
(III)若從(II)中被抽取的m人中再選派兩人參加一項慈善活動,求其中的甲、乙兩人至少有一個被選中的概率.
精英家教網

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.20     15.    16.①③④

三、解答題

17.解:(1)由題設

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設圖象向左平移m個單位,得到函數的圖象.

,…………………………8分

對稱,

…………………………10分

…………………………12分

18.(本小題滿分12分)

解:(1)設等差數列的公差為d,等比數列的公比為q,

由題設知

……………………3分

,

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿分12分)

證明:(1)取AC中點O,

    1. ∴PO⊥AC,

      又∵面PAC⊥面ABC,PO面PAC,

      ∴PO⊥面ABC,……………………2分

      連結OD,則OD//BC,

      ∴DO⊥AC,

      由三垂線定理知AC⊥PD.……………………4分

      (2)連接OB,過E作EF⊥OB于F,

      又∵面POB⊥面ABC,

      ∴EF⊥面ABC,

      過F作FG⊥AC,連接EG,

      由三垂線定理知EG⊥AC,

      ∴∠EGF即為二面角E―AC―B的平面角…………6分

      ……………………9分

      (3)由題意知

      .…………………………12分

      20.(本小題滿分12分)

      解:(1)設“生產一臺儀器合格”為事件A,則

      ……………………2分

      (2)每月生產合格儀器的數量可為3,2,1,0,則

      所以的分布列為:

      3

      2

      1

      0

      P

       

      的數學期望

      …………9分

      (3)該廠每生產一件儀器合格率為,

      ∴每臺期望盈利為(萬元)

      ∴該廠每月期望盈利額為萬元……………………12分

      21.(本小題滿分12分)

      解:(1)設

      ,

      ,

      …………………………3分

      ,這就是軌跡E的方程.……………………4分

      (2)當時,軌跡為橢圓,方程為①…………5分

      設直線PD的方程為

      代入①,并整理,得

         ②

      由題意,必有,故方程②有兩上不等實根.

      設點

      由②知,………………7分

      直線QF的方程為

      時,令,

      代入

      整理得,

      再將代入,

      計算,得x=1,即直線QF過定點(1,0)

      當k=0時,(1,0)點……………………12分

      22.(本小題滿分14分)

      解:(1)

      由題知,即a-1=0,∴a=1.……………………………2分

      x≥0,∴≥0,≥0,

      又∵>0,∴x≥0時,≥0,

      上是增函數.……………………4分

      (Ⅱ)由(Ⅰ)知

      下面用數學歸納法證明>0.

      ①當n=1時,=1>0成立;

      ②假設當時,>0,

      上是增函數,

      >0成立,

      綜上當時,>0.……………………………………6分

      >0,1+>1,∴>0,

      >0,∴,…………………………………8分

      =1,∴≤1,綜上,0<≤1.……………………………9分

      (3)∵0<≤1,

      ,

      ,

      ,

      >0,………………………………………11分

      =??……

        =n.……………………………12分

      ∴Sn++…+

      +()2+…+()n

      ==1.

      ∴Sn<1.………………………………………………………………14分

       

       

       


      同步練習冊答案