(2)若把函數(shù)的圖象向左平移個單位使所得函數(shù)的圖象關(guān)于點(0.2)對稱.求m的最小值. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

(1)設(shè)方程在(0,)內(nèi)有兩個零點,求的值;

(2)若把函數(shù)的圖像向左移動個單位,再向下平移2個單位,使所得函數(shù)的圖象關(guān)于軸對稱,求的最小值。

 

查看答案和解析>>

已知函數(shù)
(1)設(shè)方程在(0,)內(nèi)有兩個零點,求的值;
(2)若把函數(shù)的圖像向左移動個單位,再向下平移2個單位,使所得函數(shù)的圖象關(guān)于軸對稱,求的最小值。

查看答案和解析>>

已知函數(shù)
(1)設(shè)方程在(0,)內(nèi)有兩個零點,求的值;
(2)若把函數(shù)的圖像向左移動個單位,再向下平移2個單位,使所得函數(shù)的圖象關(guān)于軸對稱,求的最小值。

查看答案和解析>>

給出下列命題:
①存在實數(shù),使
②若是第一象限角,且,則
③函數(shù)是偶函數(shù)
④函數(shù)的圖象向左平移個單位,得到函數(shù)的圖象,其中正確序號是       ___________________________(把正確命題的序號都填上)

查看答案和解析>>

給出下列命題:

①存在實數(shù),使

②若是第一象限角,且,則

③函數(shù)是偶函數(shù)

④函數(shù)的圖象向左平移個單位,得到函數(shù)的圖象,其中正確序號是       ___________________________(把正確命題的序號都填上)

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.20     15.    16.①③④

三、解答題

17.解:(1)由題設(shè)

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設(shè)圖象向左平移m個單位,得到函數(shù)的圖象.

,…………………………8分

對稱,

…………………………10分

…………………………12分

18.(本小題滿分12分)

解:(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,

由題設(shè)知

……………………3分

,

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿分12分)

證明:(1)取AC中點O,

              ∴PO⊥AC,

              又∵面PAC⊥面ABC,PO面PAC,

              ∴PO⊥面ABC,……………………2分

              連結(jié)OD,則OD//BC,

              ∴DO⊥AC,

              由三垂線定理知AC⊥PD.……………………4分

              (2)連接OB,過E作EF⊥OB于F,

              又∵面POB⊥面ABC,

              ∴EF⊥面ABC,

              過F作FG⊥AC,連接EG,

              由三垂線定理知EG⊥AC,

              ∴∠EGF即為二面角E―AC―B的平面角…………6分

              ……………………9分

              (3)由題意知

              .…………………………12分

              20.(本小題滿分12分)

              解:(1)設(shè)“生產(chǎn)一臺儀器合格”為事件A,則

              ……………………2分

              (2)每月生產(chǎn)合格儀器的數(shù)量可為3,2,1,0,則

              所以的分布列為:

              3

              2

              1

              0

              P

               

              的數(shù)學期望

              …………9分

              (3)該廠每生產(chǎn)一件儀器合格率為,

              ∴每臺期望盈利為(萬元)

              ∴該廠每月期望盈利額為萬元……………………12分

              21.(本小題滿分12分)

              解:(1)設(shè)

              ,

              …………………………3分

              ,這就是軌跡E的方程.……………………4分

              (2)當時,軌跡為橢圓,方程為①…………5分

              設(shè)直線PD的方程為

              代入①,并整理,得

                 ②

              由題意,必有,故方程②有兩上不等實根.

              設(shè)點

              由②知,………………7分

              直線QF的方程為

              時,令,

              代入

              整理得,

              再將代入,

              計算,得x=1,即直線QF過定點(1,0)

              當k=0時,(1,0)點……………………12分

              22.(本小題滿分14分)

              解:(1)

              由題知,即a-1=0,∴a=1.……………………………2分

              x≥0,∴≥0,≥0,

              又∵>0,∴x≥0時,≥0,

              上是增函數(shù).……………………4分

              (Ⅱ)由(Ⅰ)知

              下面用數(shù)學歸納法證明>0.

              ①當n=1時,=1>0成立;

              ②假設(shè)當時,>0,

              上是增函數(shù),

              >0成立,

              綜上當時,>0.……………………………………6分

              >0,1+>1,∴>0,

              >0,∴,…………………………………8分

              =1,∴≤1,綜上,0<≤1.……………………………9分

              (3)∵0<≤1,

              ,

              ,

              ,

              >0,………………………………………11分

              =??……

                =n.……………………………12分

              ∴Sn++…+

              +()2+…+()n

              ==1.

              ∴Sn<1.………………………………………………………………14分

               

               

               


              同步練習冊答案