(11)右圖是一個(gè)空間幾何體的三視圖.其主視圖和左視圖 查看更多

 

題目列表(包括答案和解析)

右圖是一個(gè)空間幾何體的三視圖,根據(jù)圖中尺寸 (單位:),求該幾何體的表面積和體積.

 


查看答案和解析>>

右圖是一個(gè)空間幾何體的三視圖,如果主視圖和左視圖都是邊長為2的正三角形,俯視圖為正方形,那么該幾何體的體積為________________.

 

 

查看答案和解析>>

右圖是一個(gè)空間幾何體的三視圖,則該幾何體外接球的表面積是       ;

 

查看答案和解析>>

右圖是一個(gè)空間幾何體的三視圖,則該幾何體的表面積是               .

 

查看答案和解析>>

右圖是一個(gè)空間幾何體的三視圖,如果直角三角形的直角

邊長均為1,那么這個(gè)幾何體的體積為       (    )

    A.1              B.

    C.             D.

 

查看答案和解析>>

 

一.選擇題(本大題共12小題,每小題5分,共60分.)

D C B B C       D C A C C       A B

二.填空題(本大題共4小題,每小題4分,共16分.)

(13)        (14)        (15)        (16)―1

三.解答題

(17)(本小題滿分12分)

解:(Ⅰ)將一顆骰子先后拋擲2次,此問題中含有36個(gè)等可能的基本事件.    2分

記“兩數(shù)之和為7”為事件A,則事件A中含有6個(gè)基本事件(將事件列出更好),

∴ P(A)

記“兩數(shù)之和是4的倍數(shù)”為事件B,則事件B中含有9個(gè)基本事件,

∴ P(B)

    ∵ 事件A與事件B是互斥事件,∴ 所求概率為 .         8分

    (Ⅱ)記“點(diǎn)(x,y)在圓  的內(nèi)部”事件C,則事件C中共含有11個(gè)基本事件,∴ P(C)=.                                                   12分

(18)(本小題滿分12分)

解:(Ⅰ)∵ ABC―A1B1C1是正棱柱,

∴ BB1⊥AC,BP⊥AC.∴ AC ⊥ 平面PBB1

又∵M(jìn)、N分別是AA1、CC1的中點(diǎn),

∴ MN∥AC.∴ MN ⊥ 平面PBB1      4分

(Ⅱ)∵M(jìn)N∥AC,∴A C ∥ 平面MNQ.

QN是△B1CC1的中位線,∴B1C∥QN.∴B1C∥平面MNQ.

∴平面AB1 C ∥ 平面MNQ.                                               8分

(Ⅲ)由題意,△MNP的面積

Q點(diǎn)到平面ACC1A1的距離H顯然等于△A1B1C1的高的一半,也就是等于BP的一半,

.∴三棱錐 Q ― MNP 的體積.              12分

(19)(本小題滿分12分)

解:(Ⅰ):

          3分

依題意,的周期,且,∴ .∴

.                                            5分

[0,], ∴ ,∴ ≤1,

  ∴ 的最小值為 ,即    ∴

                                           7分

(Ⅱ)∵ =2, ∴

又 ∵ ∠∈(0,), ∴ ∠.                                  9分

△ABC中,∵ ,,

,.解得

又 ∵ 0, ∴ .                                 12分

(20)(本小題滿分12分)

解:(Ⅰ)對求導(dǎo)得

依題意有 ,且 .∴ ,且

解得 . ∴ .                             6分

(Ⅱ)由上問知,令,得

顯然,當(dāng)  或  時(shí),;當(dāng)  時(shí),

.∴ 函數(shù)上是單調(diào)遞增函數(shù),在上是單調(diào)遞減函數(shù).

當(dāng)時(shí)取極大值,極大值是

當(dāng)時(shí)取極小值,極小值是.   12分

(21)(本小題滿分12分)

解:(Ⅰ)∵

設(shè)O關(guān)于直線

對稱點(diǎn)為的橫坐標(biāo)為

又易知直線  解得線段的中點(diǎn)坐標(biāo)

為(1,-3).∴

∴ 橢圓方程為 .                                           5分

(Ⅱ)顯然直線AN存在斜率,設(shè)直線AN的方程為 ,代入 并整理得:. 

設(shè)點(diǎn),則

由韋達(dá)定理得 ,.                       8分

∵ 直線ME方程為 ,令,得直線ME與x軸的交點(diǎn)

的橫坐標(biāo)

,代入,并整理得 .   10分

再將韋達(dá)定理的結(jié)果代入,并整理可得

∴ 直線ME與軸相交于定點(diǎn)(,0).                                  12分

(22)(本小題滿分14分)

證明:(Ⅰ)∵ , ∴

顯然 , ∴ .                                       5分

,……,,

將這個(gè)等式相加,得 ,∴ .          7分

(Ⅱ)∵ ,∴ .                     9分

.即 .                        11分

,即

.                                                14分

 

 

 

 


同步練習(xí)冊答案