設(shè)集合A.B均為數(shù)集.且.則集合AB中元素的個數(shù)至多為A.5個 B.4個 C.3個 D.2個 查看更多

 

題目列表(包括答案和解析)

設(shè)集合A、B均為數(shù)集,且,則集合AB中元素的個數(shù)至

多為(    。

A.5個      B.4個        C.3個        D.2個

查看答案和解析>>

設(shè)集合A、B均為數(shù)集,且A={a1,a2},B={b1,b2,b3},則集合A∪B中元素的個數(shù)至多(  )

查看答案和解析>>

設(shè)集合A、B均為數(shù)集,且A={a1,a2},B={b1,b2,b3},則集合A∪B中元素的個數(shù)至多( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

設(shè)集合A、B均為數(shù)集,且A={a1,a2},B={b1,b2,b3},則集合A∪B中元素的個數(shù)至多( )
A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

設(shè)集合A、B均為數(shù)集,且A={a1,a2},B={b1,b2,b3},則集合A∪B中元素的個數(shù)至多


  1. A.
    2個
  2. B.
    3個
  3. C.
    4個
  4. D.
    5個

查看答案和解析>>

一、選擇題   A D B A C      B A D A C  B  B

二、填空題

13..    14.   15. .16.①②③④

三、解答題

17.(1) =

=

==

==.

的最小正周期

(2) ∵,  ∴.

∴當(dāng),即=時,有最大值;

當(dāng),即=時,有最小值-1.

 

18. (1)連結(jié),則的中點,

在△中,,

平面,平面,

∥平面 

   (2) 因為平面,平面,

,

,所以,⊥平面

∴四邊形 是矩形,

且側(cè)面⊥平面

的中點,,

平面.

所以,多面體的體積

19.解:(Ⅰ)依題意,甲答對試題數(shù)的概率分布如下:

0

1

2

3

 

 

 

甲答對試題數(shù)的數(shù)學(xué)期望:

 

(Ⅱ)設(shè)甲、乙兩人考試合格的事件分別為

        

甲、乙兩人考試均不合格的概率為:

∴甲、乙兩人至少一個合格的概率為

20.(1)

,于是,

為首相和公差均為1的等差數(shù)列.

, 得, 

(2),

,

兩式相減,得,

解出

21. 因                  

而函數(shù)處取得極值2             

所以                     

所以   為所求                       

文本框:  文本框:  (2)由(1)知

可知,的單調(diào)增區(qū)間是

所以,       

所以當(dāng)時,函數(shù)在區(qū)間上單調(diào)遞增  

(3)由條件知,過的圖形上一點的切線的斜率為:

 

,則,  

此時 ,

根據(jù)二次函數(shù)的圖象性質(zhì)知:

當(dāng)時,                

當(dāng)時,

所以,直線的斜率的取值范圍是

22. 解:(1)∵點A在圓,

      

       由橢圓的定義知:|AF1|+|AF2|=2a,

        

   (2)∵函數(shù)

  

           點F1(-1,0),F2(1,0), 

           ①若,

       ∴

       ②若ABx軸不垂直,設(shè)直線AB的斜率為k,則AB的方程為y=kx+1)

       由…………(*)

       方程(*)有兩個不同的實根.

       設(shè)點Ax1,y1),Bx2,y2),則x1,x2是方程(*)的兩個根

        

      

      

        

      

       由①②知


同步練習(xí)冊答案