題目列表(包括答案和解析)
C.選修4-4:坐標系與參數(shù)方程
在極坐標系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數(shù)和,不等式恒成立,試求實數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯;+==≥4,故A錯;由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯.故選C.
.定義域為R的函數(shù)滿足,且當時,,則當時,的最小值為( )
(A) (B) (C) (D)
.過點作圓的弦,其中弦長為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
Ⅰ選擇題
1.C 2. B 3. B 4.B 5.A 6.C 7.A 8.C 9.D 10.A 11.C 12.C
Ⅱ非選擇題
13. 14. 15. 16. (2) (3)
17. 解: (4分)
(1)增區(qū)間為: , 減區(qū)間為: (8分)
(2) (12分)
18.解:因骰子是均勻的,所以骰子各面朝下的可能性相等,設其中一枚骰子朝下的面上的數(shù)字為x,另一枚骰子朝下的面上的數(shù)字為y,則的取值如下表:
x+y y
x
1
2
3
5
1
2
3
4
6
2
3
4
5
7
3
4
5
6
8
5
6
7
8
10
從表中可得: (8分)
(2)p(=奇數(shù))
………………12分
19.解:(1)
∴ (2分)
又 恒成立 ∴
∴ ∴
∴ (6分)
(2)
∴
∴ ①)當 時, 解集為
②當 時,解集為
③當 時,解集為 (12分)
20.解:PD⊥面ABCD ∴DA、DC、DP 相互垂直
建立如圖所示空間直角坐標系Oxyz
(1)
∴
∴ ∴PC⊥DA , PC⊥DE
∴PC⊥面ADE (4分)
(2)∵PD⊥面ABCD PC⊥平面ADE
∴PD與PC夾角為所求
∴ 所求二面角E-AD-B的大小為 (8分)
(3)由(2)得:四邊形ADFE為直角梯形,且 EF=1,DF=,AD=2
∴
∴ 所求部分體積 (12分)
21.解:(1)
為等比數(shù)列 (4分)
(2) (6分)
(3) (7分)
(10分)
∴M≥6 (12分)
22.解:(1)直線AB的方程為:與拋物線的切點設為T且
∴
∴拋物線c的方程為: (3分)
⑵設直線l的方程為: 易如:
設,
①M為AN中點
由 (Ⅰ)、(Ⅱ)聯(lián)解,得 代入(Ⅱ)
4
∴直線l的方程為 : (7分)
②
(9分)
FM為∠NFA的平分線
且 (11分)
又
(14分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com