已知ABCD為矩形.PD⊥平面ABCD.PD=DC=.AD=2.E是PB中點.(1)求證PC⊥平面ADE,(2)求二面角E-AD-B的大小,(3)求四棱錐P-ABCD夾在平面ADE與 底面ABCD之間部分的體積. 查看更多

 

題目列表(包括答案和解析)

如圖,已知ABCD為矩形,PD⊥平面ABCD,PD=DC=,AD=2,E為PB上一點,且PC⊥平面ADE.

(1)求PC與平面PBD所成角的大小;

(2)求的值;

(3)求四棱錐P—ABCD夾在平面ADE與底面ABCD之間部分的體積.

查看答案和解析>>

已知P在矩形ABCD邊DC上,AB=2,BC=1,F(xiàn)在AB上且DF⊥AP,垂足為E,將△ADP沿AP折起.使點D位于D′位置,連D′B、D′C得四棱錐D′-ABCP.
(I)求證D′F⊥AP;
(II)若PD=1并且平面D′AP⊥平面ABCP,求四棱錐D′-ABCP的體積.
精英家教網(wǎng)

查看答案和解析>>

已知P在矩形ABCD邊DC上,AB=2,BC=1,F(xiàn)在AB上且DF⊥AP,垂足為E,將△ADP沿AP折起.使點D位于D′位置,連D′B、D′C得四棱錐D′-ABCP.
(I)求證D′F⊥AP;
(II)若PD=1并且平面D′AP⊥平面ABCP,求四棱錐D′-ABCP的體積.

查看答案和解析>>

(本小題滿分12分)

已知P在矩形ABCD邊DC上,AB=2,BC=1,F(xiàn)在AB上且DF ⊥AP,垂足為E,將△ADP沿AP折起.使點D位于D′位置,連D′B、D′C得四棱錐D′—ABCP.

   (I)求證D′F⊥AP;

 
   (II)若PD=1并且平面D′AP⊥平面ABCP,求四棱錐D′—ABCP的體積

查看答案和解析>>

(本小題滿分12分)
已知P在矩形ABCD邊DC上,AB=2,BC=1,F(xiàn)在AB上且DF ⊥AP,垂足為E,將△ADP沿AP折起.使點D位于D′位置,連D′B、D′C得四棱錐D′—ABCP.
(I)求證D′F⊥AP;


 
  (II)若PD=1并且平面D′AP⊥平面ABCP,求四棱錐D′—ABCP的體積

 

查看答案和解析>>

Ⅰ選擇題

1.C   2. B   3. B   4.B   5.A   6.C   7.A   8.C   9.D   10.A   11.C   12.C

Ⅱ非選擇題

13.    14.    15.  16. (2) (3)

17. 解:   (4分)

      (1)增區(qū)間為:  ,  減區(qū)間為:   (8分)

      (2)   (12分)

18.解:因骰子是均勻的,所以骰子各面朝下的可能性相等,設(shè)其中一枚骰子朝下的面上的數(shù)字為x,另一枚骰子朝下的面上的數(shù)字為y,則的取值如下表:

 

x+y    y

 

x

1

2

3

5

1

2

3

4

6

2

3

4

5

7

3

4

5

6

8

5

6

7

8

10

從表中可得: (8分)

(2)p(=奇數(shù))

                          

………………12分

19.解:(1) 

  ∴    (2分)

恒成立  ∴

  ∴

    (6分)

 (2)

 ∴

 ∴ ①)當(dāng) 時, 解集為

    ②當(dāng) 時,解集為

   ③當(dāng) 時,解集為   (12分)

20.解:PD⊥面ABCD  ∴DA、DC、DP 相互垂直

      建立如圖所示空間直角坐標(biāo)系Oxyz

     (1)     

          ∴ 

           

      ∴     ∴PC⊥DA ,  PC⊥DE

     ∴PC⊥面ADE  (4分)

(2)∵PD⊥面ABCD    PC⊥平面ADE

     ∴PD與PC夾角為所求

       ∴ 所求二面角E-AD-B的大小為  (8分)

(3)由(2)得:四邊形ADFE為直角梯形,且 EF=1,DF=,AD=2

   ∴

   ∴ 所求部分體積     (12分)

21.解:(1)

為等比數(shù)列 (4分)

      (2) (6分)

(3)   (7分)

       (10分)

∴M≥6   (12分)

22.解:(1)直線AB的方程為:與拋物線的切點設(shè)為T

      ∴

 

 

∴拋物線c的方程為:      (3分)

⑵設(shè)直線l的方程為:   易如:

設(shè),  

①M為AN中點

 由 (Ⅰ)、(Ⅱ)聯(lián)解,得     代入(Ⅱ)

4

∴直線l的方程為 :     (7分)

 

   (9分)

FM為∠NFA的平分線

     (11分)

     (14分)

 


同步練習(xí)冊答案