A. B. C. D. 查看更多

 

題目列表(包括答案和解析)

A.        B.     C.       D.不存在

查看答案和解析>>

     A          B           C            D

查看答案和解析>>

 (     )

    A.      B.      C.            D.

查看答案和解析>>

                                                           (    )

A.             B.               C.             D.

 

查看答案和解析>>

=(      )

A.              B.             C.             D.

 

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

C

C

B

B

C

C

A

C

B

B

二、填空題

13.        14.       15.      16.___-1__

三、解答題

17.解:1)

          =

2)

,而

,

18.解:(I)由題意:的取值為1,3,又

      

      ξ

      1

      3

      P

       

            

       

      ∴Eξ=1×+3×=.                       

         (II)當(dāng)S8=2時(shí),即前八秒出現(xiàn)“○”5次和“×”3次,又已知

             若第一、三秒出現(xiàn)“○”,則其余六秒可任意出現(xiàn)“○”3次;

             若第一、二秒出現(xiàn)“○”,第三秒出現(xiàn)“×”,則后五秒可任出現(xiàn)“○”3次.

             故此時(shí)的概率為

      19.答案:(Ⅰ)解:根據(jù)求導(dǎo)法則有

      ,

      于是,列表如下:

      2

      0

      極小值

      故知內(nèi)是減函數(shù),在內(nèi)是增函數(shù),所以,在處取得極小值

      (Ⅱ)證明:由知,的極小值

      于是由上表知,對(duì)一切,恒有

      從而當(dāng)時(shí),恒有,故內(nèi)單調(diào)增加.

      所以當(dāng)時(shí),,即

      故當(dāng)時(shí),恒有

      20.(1)數(shù)列{an}的前n項(xiàng)和

                                                 

      ,     

      數(shù)列是正項(xiàng)等比數(shù)列,,      

      公比,數(shù)列                  

      (2)解法一:

                                     

      ,

      當(dāng),又

      故存在正整數(shù)M,使得對(duì)一切M的最小值為2

         (2)解法二:

      ,        

      ,

      函數(shù)

      對(duì)于

      故存在正整數(shù)M,使得對(duì)一切恒成立,M的最小值為2

      21.答案:1)   

                

             2)由(1)知,雙曲線的方程可設(shè)為漸近線方程為

      設(shè):,

      而點(diǎn)p在雙曲線上,

      所以:

      所以雙曲線的方程為:

      22.證明: ,

      ,從而有

      綜上知:

       

      23.解:如圖1):極坐標(biāo)系中,圓心C,直線:

      轉(zhuǎn)化為直角坐標(biāo)系:如圖2),點(diǎn)

          X

          圖1

          由點(diǎn)到直線的距離:

          ,即

           

           

              0

               

                圖2

                24.證明:由已知平行四邊形ABCD為平行四邊形,,

                中,

                ,又BC=AD

                ,得證。


                同步練習(xí)冊(cè)答案