(Ⅲ)若問(wèn)是否存在實(shí)數(shù)m.使得y=f的圖象有且只有兩個(gè)不同的交點(diǎn)?若存在.求出m的值,若不存在.說(shuō)明理由.解:(I)由圖形可知二次函數(shù)的圖象過(guò)點(diǎn)的最大值為16 查看更多

 

題目列表(包括答案和解析)

若定義在D上的函數(shù)y=f(x)滿(mǎn)足條件:存在實(shí)數(shù)a,b(a<b)且[a,b]?D,使得:
①任取x0∈[a,b],有f(x0)=C(C是常數(shù));
②對(duì)于D內(nèi)任意y0,當(dāng)y0∉[a,b],總有f(y0)<C.
我們將滿(mǎn)足上述兩條件的函數(shù)f(x)稱(chēng)為“平頂型”函數(shù),稱(chēng)C為“平頂高度”,稱(chēng)b-a為“平頂寬度”.根據(jù)上述定義,解決下列問(wèn)題:
(1)函數(shù)f(x)=-|x+2|-|x-3|是否為“平頂型”函數(shù)?若是,求出“平頂高度”和“平頂寬度”;若不是,簡(jiǎn)要說(shuō)明理由.
(2)已知f(x)=mx-
x2+2x+n
,x∈[-2,+∞)
是“平頂型”函數(shù),求出m,n的值.
(3)對(duì)于(2)中的函數(shù)f(x),若f(x)=kx在x∈[-2,+∞)上有兩個(gè)不相等的根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

若定義在D上的函數(shù)y=f(x)滿(mǎn)足條件:存在實(shí)數(shù)a,b(a<b)且[a,b]?D,使得:
①任取x0∈[a,b],有f(x0)=C(C是常數(shù));
②對(duì)于D內(nèi)任意y0,當(dāng)y0∉[a,b],總有f(y0)<C.
我們將滿(mǎn)足上述兩條件的函數(shù)f(x)稱(chēng)為“平頂型”函數(shù),稱(chēng)C為“平頂高度”,稱(chēng)b-a為“平頂寬度”.根據(jù)上述定義,解決下列問(wèn)題:
(1)函數(shù)f(x)=-|x+2|-|x-3|是否為“平頂型”函數(shù)?若是,求出“平頂高度”和“平頂寬度”;若不是,簡(jiǎn)要說(shuō)明理由.
(2)已知數(shù)學(xué)公式是“平頂型”函數(shù),求出m,n的值.
(3)對(duì)于(2)中的函數(shù)f(x),若f(x)=kx在x∈[-2,+∞)上有兩個(gè)不相等的根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

若定義在D上的函數(shù)y=f(x)滿(mǎn)足條件:存在實(shí)數(shù)a,b(a<b)且[a,b]?D,使得:
①任取x0∈[a,b],有f(x0)=C(C是常數(shù));
②對(duì)于D內(nèi)任意y0,當(dāng)y0∉[a,b],總有f(y0)<C.
我們將滿(mǎn)足上述兩條件的函數(shù)f(x)稱(chēng)為“平頂型”函數(shù),稱(chēng)C為“平頂高度”,稱(chēng)b-a為“平頂寬度”.根據(jù)上述定義,解決下列問(wèn)題:
(1)函數(shù)f(x)=-|x+2|-|x-3|是否為“平頂型”函數(shù)?若是,求出“平頂高度”和“平頂寬度”;若不是,簡(jiǎn)要說(shuō)明理由.
(2)已知f(x)=mx-
x2+2x+n
,x∈[-2,+∞)
是“平頂型”函數(shù),求出m,n的值.
(3)對(duì)于(2)中的函數(shù)f(x),若f(x)=kx在x∈[-2,+∞)上有兩個(gè)不相等的根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

已知二次函數(shù)f(x)=x2+bx+c(x∈R),同時(shí)滿(mǎn)足以下條件:
①存在實(shí)數(shù)m,使得f(m)=0,且對(duì)任意實(shí)數(shù)x,恒有f(x)≥0成立;
②存在實(shí)數(shù)k (k≠0),使得f(1-k)=f(1+k)成立.
(1)求函數(shù)y=f(x)的解析式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,Sn=f(n),數(shù)列{bn}滿(mǎn)足關(guān)系式,問(wèn)數(shù)列{bn}中是否存在不同的3項(xiàng),使之成為等比數(shù)列?若存在,試寫(xiě)出任意符合條件的3項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知二次函數(shù)f(x)=x2+bx+c(x∈R),同時(shí)滿(mǎn)足以下條件:
①存在實(shí)數(shù)m,使得f(m)=0,且對(duì)任意實(shí)數(shù)x,恒有f(x)≥0成立;
②存在實(shí)數(shù)k (k≠0),使得f(1-k)=f(1+k)成立.
(1)求函數(shù)y=f(x)的解析式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,Sn=f(n),數(shù)列{bn}滿(mǎn)足關(guān)系式bn=an+2+
2
,問(wèn)數(shù)列{bn}中是否存在不同的3項(xiàng),使之成為等比數(shù)列?若存在,試寫(xiě)出任意符合條件的3項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案