=.故 查看更多

 

題目列表(包括答案和解析)

高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,故選C. 

答案:C

【命題立意】:本題考查復(fù)數(shù)的除法運(yùn)算,分子、分母需要同乘以分母的共軛復(fù)數(shù),把分母變?yōu)閷?shí)數(shù),將除法轉(zhuǎn)變?yōu)槌朔ㄟM(jìn)行運(yùn)算.

查看答案和解析>>

深夜,一輛出租車牽涉到一起交通事故中,該市有紅色與綠色兩種顏色的出租車2000輛,其中綠色出租車和紅色出租車分別占整個(gè)城市的85%和15%,根據(jù)現(xiàn)場(chǎng)目擊者說(shuō):事故現(xiàn)場(chǎng)的出租車是紅色的.有關(guān)部門對(duì)證人的辨別能力作了測(cè)試,測(cè)得他辨認(rèn)的正確率為80%,于是警察就認(rèn)定紅色出租車有較大的肇事嫌疑.
(1)根據(jù)現(xiàn)場(chǎng)目擊者的說(shuō)法,填寫下列的信息表,并求紅色出租車肇事的概率;
證人所說(shuō)的顏色(正確率80%)
真實(shí)顏色 綠色(輛) 紅色(輛) 合計(jì)
綠色(85%) 1700
紅色(15%) 300
合計(jì)(輛) 2000
(2)試問(wèn):肇事的認(rèn)定對(duì)紅色出租車公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖,A處建有一個(gè)補(bǔ)給站,在A正西120海里處有一個(gè)港口B,一艘科考船從B出發(fā),沿北偏東30°的方向,以20海里/小時(shí)的速度駛離港口.同時(shí)一艘為科考船運(yùn)送補(bǔ)給的快艇從A出發(fā),沿北偏西30°的方向,以60海里/小時(shí)的速度行駛,1小時(shí)后補(bǔ)給船行駛至C處,發(fā)生故障停留了1小時(shí).快艇為在最短時(shí)間內(nèi)將補(bǔ)給送到科考船,在C處調(diào)整航向后繼續(xù)以60海里/小時(shí)的速度直線行駛,恰好與科考船在D處相遇,求相遇時(shí)科考船共行駛了多少小時(shí).

查看答案和解析>>

深夜,一輛出租車被牽涉進(jìn)一起交通事故,該市有兩家出租車公司——紅色出租車公司和藍(lán)色出租車公司,其中藍(lán)色出租車公司和紅色出租車公司分別占整個(gè)城市出租車的85%和15%。據(jù)現(xiàn)場(chǎng)目擊證人說(shuō),事故現(xiàn)場(chǎng)的出租車是紅色,并對(duì)證人的辨別能力作了測(cè)試,測(cè)得他辨認(rèn)的正確率為80%,于是警察就認(rèn)定紅色出租車具有較大的肇事嫌疑. 請(qǐng)問(wèn)警察的認(rèn)定對(duì)紅色出租車公平嗎?試說(shuō)明理由.

查看答案和解析>>

如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB

(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

 

【解析】本試題主要考查了立體幾何中的運(yùn)用。

(1)證明:因?yàn)镾D⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB   所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.

(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知

AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.

故△ADE為等腰三角形.

取ED中點(diǎn)F,連接AF,則AF⊥DE,AF2= AD2-DF2 =

連接FG,則FG∥EC,F(xiàn)G⊥DE.

所以,∠AFG是二面角A-DE-C的平面角.

連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =,

cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,

所以,二面角A-DE-C的大小為120°

 

查看答案和解析>>


同步練習(xí)冊(cè)答案