=.即.代入直線的方程后并化簡得, 查看更多

 

題目列表(包括答案和解析)

已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于、兩點。

(I)求曲線的方程;

(II)試證明:在軸上存在定點,使得總能被軸平分

【解析】第一問中設為曲線上的任意一點,則點在圓上,

,曲線的方程為

第二問中,設點的坐標為,直線的方程為,  ………………3分   

代入曲線的方程,可得 

,∴

確定結論直線與曲線總有兩個公共點.

然后設點,的坐標分別, ,則,  

要使軸平分,只要得到。

(1)設為曲線上的任意一點,則點在圓上,

,曲線的方程為.  ………………2分       

(2)設點的坐標為,直線的方程為,  ………………3分   

代入曲線的方程,可得 ,……5分            

,∴,

∴直線與曲線總有兩個公共點.(也可根據點M在橢圓的內部得到此結論)

………………6分

設點,的坐標分別, ,則,   

要使軸平分,只要,            ………………9分

,,        ………………10分

也就是,,

,即只要  ………………12分  

時,(*)對任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點,使得總能被軸平分

 

查看答案和解析>>

已知中心在原點,焦點在軸上的橢圓的離心率為,且經過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存過點(2,1)的直線與橢圓相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.

【解析】第一問利用設橢圓的方程為,由題意得

解得

第二問若存在直線滿足條件的方程為,代入橢圓的方程得

因為直線與橢圓相交于不同的兩點,設兩點的坐標分別為,

所以

所以.解得。

解:⑴設橢圓的方程為,由題意得

解得,故橢圓的方程為.……………………4分

⑵若存在直線滿足條件的方程為,代入橢圓的方程得

因為直線與橢圓相交于不同的兩點,設兩點的坐標分別為,

所以

所以

因為,即

所以

所以,解得

因為A,B為不同的兩點,所以k=1/2.

于是存在直線L1滿足條件,其方程為y=1/2x

 

查看答案和解析>>

已知曲線上動點到定點與定直線的距離之比為常數

(1)求曲線的軌跡方程;

(2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;

(3)以曲線的左頂點為圓心作圓,設圓與曲線交于點與點,求的最小值,并求此時圓的方程.

【解析】第一問利用(1)過點作直線的垂線,垂足為D.

代入坐標得到

第二問當斜率k不存在時,檢驗得不符合要求;

當直線l的斜率為k時,;,化簡得

第三問點N與點M關于X軸對稱,設,, 不妨設

由于點M在橢圓C上,所以

由已知,則

,

由于,故當時,取得最小值為

計算得,,故,又點在圓上,代入圓的方程得到.  

故圓T的方程為:

 

查看答案和解析>>

光線從點A(2,3)射出,若鏡面的位置在直線l:x+y+1=0上,反射光線經過B(1,1),求入射光線和反射光線所在直線的方程,并求光線從A到B所走過的路線長.

查看答案和解析>>

光線從點A(2,3)射出,若鏡面的位置在直線上,反射線經過

       B(1,1),求入射光線和反射光線所在直線的方程,并求光線從A到B所走過

       的路線長

查看答案和解析>>


同步練習冊答案