(1)若時.函數(shù)在其定義域是增函數(shù).求的取值范圍, 查看更多

 

題目列表(包括答案和解析)

,
(I)若時,函數(shù)在其定義域是增函數(shù),求b的取值范圍。
(II)在(I)的結論下,設函數(shù) ,求函數(shù)的最小值

查看答案和解析>>

 

函數(shù),其中為常數(shù).

(1)證明:對任意,的圖象恒過定點;

(2)當時,判斷函數(shù)是否存在極值?若存在,求出極值;若不存在,說明理由;

(3)若對任意時,恒為定義域上的增函數(shù),求的最大值.

 

 

 

 

 

 

 

查看答案和解析>>

函數(shù),其中a為常數(shù).

(1)證明:對任意a∈R,y=f(x)的圖象恒過定點;

(2)當a=-1時,判斷函數(shù)y=f(x)是否存在極值?若存在,求出極值;若不存在,說明理由;

(3)若對任意a∈(0,m]時,y=f(x)恒為定義域上的增函數(shù),求m的最大值.

查看答案和解析>>

已知

   (1)若,函數(shù)在其定義域內是增函數(shù),求的取值范圍;

   (2)當時,證明:函數(shù)只有一個零點;

   (3)若的圖象與軸交于點,AB中點為,求證:

查看答案和解析>>

設函數(shù),其中a為常數(shù).
(1)證明:對任意a∈R,y=f(x)的圖象恒過定點;
(2)當a=-1時,判斷函數(shù)y=f(x)是否存在極值?若存在,求出極值;若不存在,說明理由;
(3)若對任意a∈(0,m]時,y=f(x)恒為定義域上的增函數(shù),求m的最大值.

查看答案和解析>>

一、選擇題

二、填空題

13.;   14.112;  15.;    16.

三、解答題

17.解:∵向量 的夾角,

①當時,;②當時,;③當時,

綜上所述:當時, 的范圍是時,的范圍是;

時, 的范圍是

18.解:(1) ∵底面ABC,∴.又∵是正三角形,且E為AC的中點,.又,平面PAC.平面PEF,

∴平面 平面PAC.

(2)取CD的中點F,則點F即為所求.∵E、F分別為CA、CD的中點,.

平面PEF,平面PEF,∴平面PEF.

(3).

19.解:(1)

依題意

 

(2)

在Rt△ABC中,

20.解:(I),

 由, ,

 

,,∴。

(II)由得:

,

 ,

由②-①得:

21解:當年生產x(萬件)時,

年生產成本=固定費用+年生產費用,

年銷售收入,∵利潤=銷售收入―生產成本―促銷費,

 ∴

 

(萬元).

當切僅當時,

∴該企業(yè)2008年的促銷費投入7萬元時,企業(yè)的年利潤(萬元)最大.

22.解:(1)依題意:上是增函數(shù),

恒成立,

∴b的取值范圍為

(2)設則函數(shù)化為,

∴當上為增函數(shù),

時,

上為減函數(shù),

時,綜上所述,當

時,;

(3)設點P、Q的坐標是

則點M、N的橫坐標為C1在M處的切線斜率為

C­2­在點N處的切線斜率

假設C1在點M處的切線與C2在點N處的切線平行,則

。設

所以上單調遞增,故,則這與①矛盾,假設不成立,故C1在點M處的切線與C2在點N處的切線不平行。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習冊答案