14.某大型超市銷售的乳類商品有四種:液態(tài)奶.酸奶.嬰幼兒奶粉.成人奶粉.且液態(tài)奶.酸奶.嬰幼兒奶粉.成人奶粉分別有40種.10種.30種.20種不同的品牌.現從中抽取一個容量為20的樣本進行三聚氰胺安全檢測.若采用分層抽樣的方法抽取樣本.則抽取的液態(tài)奶與嬰幼兒奶粉品牌數之和是 . 查看更多

 

題目列表(包括答案和解析)

某大型超市銷售的乳類商品有四種:液態(tài)奶、酸奶、嬰幼兒奶粉、成人奶粉,且液態(tài)奶、酸奶、嬰幼兒奶粉、成人奶粉分別有40種、10種、30種、20種不同的品牌,現從中抽取一個容量為20的樣本進行三聚氰胺安全檢測.若采用分層抽樣的方法抽取樣本,則抽取的酸奶與成人奶粉品牌數之和是(  )
A、7B、6C、5D、4

查看答案和解析>>

某大型超市銷售的乳類商品有四種:純奶、酸奶、嬰幼兒奶粉、成人奶粉,且純奶、酸奶、嬰幼兒奶粉、成人奶粉分別有30種、10種、35種、25種不同的品牌.現采用分層抽樣的方法從中抽取一個容量為n的樣本進行三聚氰胺安全檢測,若抽取的嬰幼兒奶粉的品牌數是7,則n=
 

查看答案和解析>>

某大型超市銷售的乳類商品有四種:液態(tài)奶、酸奶、嬰幼兒奶粉、成人奶粉,且液態(tài)奶、酸奶、嬰幼兒奶粉、成人奶粉分別有40種、10種、30種、20種不同的品牌,現從中抽取一個容量為20的樣本進行三聚氰胺安全檢測.若采用分層抽樣的方法抽取樣本,則抽取的酸奶與成人奶粉品牌數之和是
6
6

查看答案和解析>>

某大型超市銷售的乳類商品有四種:純奶、酸奶、嬰幼兒奶粉、成人奶粉,且純奶、酸奶、嬰幼兒奶粉、成人奶粉分別有種、種、種、種不同的品牌.現采用分層抽樣的方法從中抽取一個容量為的樣本進行三聚氰胺安全檢測,若抽取的嬰幼兒奶粉的品牌數是種,則         

 

查看答案和解析>>

某大型超市銷售的乳類商品有四種:純奶、酸奶、嬰幼兒奶粉、成人奶粉,且純奶、酸奶、嬰幼兒奶粉、成人奶粉分別有30種、10種、35種、25種不同的品牌,現采用分層抽樣的方法從中抽取一個容量為n的樣本進行三聚氰胺安全檢測,若抽取的嬰幼兒奶粉的品牌是7種,則n________.

 

查看答案和解析>>

 

說明:

    一、本解答給出一種或幾種解法供參考,如果考生的解法與本解答不同,可根據試題的主要考查內容比照評分標準制訂相應的評分細則。

    二、對計算題當考生的解答在某一步出現錯誤時,如果后續(xù)部分的解答未改變該題的內容和難度,可視影響的程度決定給分,但不得超過該部分正確解答應得分數的一半;如果后續(xù)部分的解答有較嚴重的錯誤,就不再給分。

    三、解答右端所注分數,表示考生正確做到這一步應得累加分。

    四、只給整數分數,選擇題和填空題不給中間分數。

一、選擇題:每小題5分,滿分60分。

1―5 DBADD    6―10 AAACA    11―12 BC

二、填空題:每題5分,共20分

13.    14.14    15.1    16.②③

三、解答題(滿分70分)

17.本小題主要考查正弦定理、余弦定理,三角形面積公式等基礎知識。

    解:(1)

                                    (5分)

   (2)

   

    得                                                             (8分)

    (10分)

18.本小題主要考查概率的基本知識與分類思想,獨立重復試驗概率問題,考查運用數學知

識分析問題解決問題的能力。

解:(1)需賽七局結束比賽說明前六局3:3打平,即在第三、第四、第五、第六局中乙恰贏一局,設需賽七局結束比賽為事件A,

                                               (5分)

   (2)設甲獲勝為事件B,則甲獲勝包括甲以4:2獲勝和甲以4:3獲勝兩種情況:

                           (12分)

19.本小題主要考查正四棱柱中線線位置關系、線面垂直判定、三垂線定理、二面角等基礎知識,考查空間想象能力、邏輯思維能力、運算能力以及空間向量的應用。

    ∵AC⊥BD,∴A1C⊥BD,

若A1C⊥平面BED,則A1C⊥BE,

由三垂線定理可得B1C⊥BE,

∴△BCE∽△B1BC,

   (2)連A1G,連EG交A1C于H,則EG⊥BD,

∵A1C⊥平面BED,

∴∠A1GE是二面角A1―BD―E的平面角。

(12分)

   (1)以D為坐標原點,射線DA為x軸的正半軸,

射線DC為y軸的正半軸,建立如圖所示直角坐

標系D―xyz。

      (6分)

   (2)設向量的一個法向量,

                         (12分)

20.本小題主要考查等差數列、等比數列定義,求通項、數列求和等基礎知識,考查綜合分析問題的能力和推理論證能力。

    解:(1)

   

   (2)

   

21.解:(1)對求導得

   

―3

(-3,0)

0

(0,2)

2

(2,9)

9

 

+

0

0

+

 

 

極大

極小

 

    從而(―3,0)和(2,9)是函數的單調遞增區(qū)間,(0,2)是的單調遞減區(qū)間,

   

   (2)設曲線,則切線的方程為

   (3)根據上述研究,對函數分析如下:

   

    交點的橫坐標,交點的個數即為方程的實根的個數。

   

   

22.解:(1)

 

    把②兩邊平方得

    又代入上式得

  • <li id="9bubn"><dl id="9bubn"></dl></li>
  • <rt id="9bubn"></rt>

          把③代入①得

         

                                               (6分)

         (2)設直線AB的傾斜角為,根據對稱性只需研究是銳角情形,不妨設是銳角,

          則

         

          從而    (9分)

          根據(1)知

         

         

          因此          (12分)

       


      同步練習冊答案