題目列表(包括答案和解析)
(本小題滿分14分)
某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個(gè)) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;(5分)
(Ⅱ)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;(6分)
(Ⅲ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?(3分)
(參考公式: )
(本小題滿分14分)
桌面上有三顆均勻的骰子(6個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6)。重復(fù)下面的操作,直到桌面上沒有骰子:將骰子全部拋擲,然后去掉那些朝上點(diǎn)數(shù)為奇數(shù)的骰子。記操作三次之內(nèi)(含三次)去掉的骰子的顆數(shù)為X.
(1)求;
(2)求X的分布列及期望.
(本小題滿分14分)
下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù)
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(本小題滿分14分)
一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號(hào),某月的產(chǎn)量如下表(單位:輛):
轎車A | 轎車B | 轎車C | |
舒適型 | 100 |
|
|
標(biāo)準(zhǔn)型 | 300 | 450 | 600 |
已知在該月生產(chǎn)的轎車中隨機(jī)抽一輛,抽到舒適型轎車B的概率為0.075,按類型分層抽樣的方法在這個(gè)月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛.
(1)求和的值;
(2)用分層抽樣的方法在C類轎車中抽取一個(gè)容量為5的樣本.將該樣本看成一個(gè)總體,從中任取2輛,求至少有1輛舒適型轎車的概率;
(3)用隨機(jī)抽樣的方法從B類舒適型轎車中抽取8輛,經(jīng)檢測(cè)它們的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把這8輛轎車的得分看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過(guò)0.5的概率.
(本小題滿分14分)
一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號(hào),某月的產(chǎn)量如下表(單位:輛):
轎車A | 轎車B | 轎車C | |
舒適型 | 100 |
|
|
標(biāo)準(zhǔn)型 | 300 | 450 | 600 |
已知在該月生產(chǎn)的轎車中隨機(jī)抽一輛,抽到舒適型轎車B的概率為0.075,按類型分層抽樣的方法在這個(gè)月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛.
(1)求和的值;
(2)用分層抽樣的方法在C類轎車中抽取一個(gè)容量為5的樣本.將該樣本看成一個(gè)總體,從中任取2輛,求至少有1輛舒適型轎車的概率;
(3)用隨機(jī)抽樣的方法從B類舒適型轎車中抽取8輛,經(jīng)檢測(cè)它們的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把這8輛轎車的得分看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過(guò)0.5的概率.
說(shuō)明:1.參考答案與評(píng)分標(biāo)準(zhǔn)指出了每道題要考查的主要知識(shí)和能力,并給出了一種或幾種解法供參考,如果考生的解法與參考答案不同,可根據(jù)試題主要考查的知識(shí)點(diǎn)和能力比照評(píng)分標(biāo)準(zhǔn)給以相應(yīng)的分?jǐn)?shù).
2.對(duì)解答題中的計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定后繼部分的得分,但所給分?jǐn)?shù)不得超過(guò)該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.
3.解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).
4.只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分.
一、選擇題:本大題主要考查基本知識(shí)和基本運(yùn)算.共10小題,每小題5分,滿分50分.
題號(hào)
1
2
3
4
5
6
7
8
答案
C
A
B
A
B
C
C
D
二、填空題:本大題主要考查基本知識(shí)和基本運(yùn)算.本大題共7小題,考生作答6小題,每小題5分,滿分30分.其中14~15題是選做題,考生只能選做一題.
9. 10. 11. 12.
13. 14. 15.2
說(shuō)明:第14題答案可以有多種形式,如可答或Z等, 均給滿分.
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說(shuō)明、證明過(guò)程和演算步驟.
16.(本小題滿分12分)
解:(1)∵
…… 2分
…… 4分
. …… 6分
∴. …… 8分
(2) 當(dāng)時(shí), 取得最大值, 其值為2 . ……10分
此時(shí),即Z. ……12分
17.(本小題滿分12分)
解:(1)設(shè)“這箱產(chǎn)品被用戶接收”為事件,. ……3分
即這箱產(chǎn)品被用戶接收的概率為. ……4分
(2)的可能取值為1,2,3. ……5分
=,
=,
=, ……8分
∴的概率分布列為:
1
2
3
……10分
∴=. ……12分
18.(本小題滿分14分)
解:(1)∵點(diǎn)A、D分別是、的中點(diǎn),
∴. …… 2分
∴∠=90º.
∴.
∴ ,
∵,
∴⊥平面. …… 4分
∵平面,
∴. …… 6分
(2)法1:取的中點(diǎn),連結(jié)、.
∵,
∴.
∵,
∴平面.
∵平面,
∴. …… 8分
∵
∴平面.
∵平面,
∴.
∴∠是二面角的平面角. ……10分
在Rt△中, ,
在Rt△中, ,
. ……12分
∴ 二面角的平面角的余弦值是. ……14分
法2:建立如圖所示的空間直角坐標(biāo)系.
則(-1,0,0),(-2,1,0),(0,0,1).
∴=(-1,1,0),=(1,0,1), ……8分
設(shè)平面的法向量為=(x,y,z),則:
, ……10分
令,得,
∴=(1,1,-1).
顯然,是平面的一個(gè)法向量,=(). ……12分
∴cos<,>=.
∴二面角的平面角的余弦值是. ……14分
19. (本小題滿分14分)
解:(1)依題意知, …… 2分
∵,
∴. …… 4分
∴所求橢圓的方程為. …… 6分
(2)∵ 點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,
∴ ……8分
解得:,. ……10分
∴. ……12分
∵ 點(diǎn)在橢圓:上,
∴, 則.
∴的取值范圍為. ……14分
20.(本小題滿分14分)
解:(1)數(shù)表中前行共有個(gè)數(shù),
即第i行的第一個(gè)數(shù)是, …… 2分
∴=.
∵,=2010,
∴ i=11. …… 4分
令,
解得. …… 6分
(2)∵
. …… 7分
∴.
當(dāng)時(shí), , 則;
當(dāng)時(shí), , 則;
當(dāng)時(shí), , 則;
當(dāng)時(shí), 猜想: . …… 11分
下面用數(shù)學(xué)歸納法證明猜想正確.
① 當(dāng)時(shí),, 即成立;
② 假設(shè)當(dāng)時(shí), 猜想成立, 即,
則,
∵,
∴.
即當(dāng)時(shí),猜想也正確.
由①、②得當(dāng)時(shí), 成立.
當(dāng)時(shí),. …… 13分
綜上所述, 當(dāng)時(shí), ; 當(dāng)時(shí),. …… 14分
另法( 證明當(dāng)時(shí), 可用下面的方法):
當(dāng)時(shí), C + C + C+ C
.
21. (本小題滿分14分)
解:(1)當(dāng)時(shí),,
∴.
令=0, 得 . …… 2分
當(dāng)時(shí),, 則在上單調(diào)遞增;
當(dāng)時(shí),, 則在上單調(diào)遞減;
當(dāng)時(shí),, 在上單調(diào)遞增. …… 4分
∴ 當(dāng)時(shí), 取得極大值為;
當(dāng)時(shí), 取得極小值為. …… 6分
(2) ∵ = ,
∴△= = .
① 若a≥1,則△≤0, …… 7分
∴≥0在R上恒成立,
∴ f(x)在R上單調(diào)遞增 .
∵f(0),,
∴當(dāng)a≥1時(shí),函數(shù)f(x)的圖象與x軸有且只有一個(gè)交點(diǎn). …… 9分
② 若a<1,則△>0,
∴= 0有兩個(gè)不相等的實(shí)數(shù)根,不妨設(shè)為x1,x2,(x1<x2).
∴x1+x2 = 2,x1x2 = a.
當(dāng)變化時(shí),的取值情況如下表:
x
x1
(x1,x2)
x2
+
0
-
0
+
f(x)
ㄊ
極大值
ㄋ
極小值
ㄊ
…… 11分
∵,
∴.
∴
.
同理.
∴
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com