解法一:由f(x)=(x≠0)求得其反函數(shù)為:f-1(x)=(x≠0).故答案為B. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

閱讀下面內(nèi)容,思考后做兩道小題。

在一節(jié)數(shù)學課上,老師給出一道題,讓同學們先解,題目是這樣的:

已知函數(shù)f(x)=kx+b,1≤f(1)≤3,-1≤f(-1)≤1,求Z=f(2)的取值范圍。

題目給出后,同學們馬上投入緊張的解答中,結(jié)果很快出來了,大家解出的結(jié)果有很多個,下面是其中甲、乙兩個同學的解法:

甲同學的解法:由f(1)=k+b,f(-1)=-k+b得

①+②得:0≤2b≤4,即0≤b≤2               ③

② ×(-1)+①得:-1≤k-b≤1             ④

④+②得:0≤2k≤4                                               ⑤

③+⑤得:0≤2k+b≤6。

又∵f(2)=2k+b

∴0≤f(2)≤6,0≤Z≤6

      乙同學的解法是:由f(1)=k+b,f(-1)=-k+b得

①+②得:0≤2b≤4,即:0≤b≤2                        ③

①-②得:2≤2k≤2,即:1≤k≤1

∴k=1,

∵f(2)=2k+b=1+b

由③得:1≤f(2)≤3

∴:1≤Z≤3

(Ⅰ)如果課堂上老師讓你對甲、乙兩同學的解法給以評價,你如何評價?

(Ⅱ)請你利用線性規(guī)劃方面的知識,再寫出一種解法。

查看答案和解析>>

已知函數(shù)f(x)=(x2+ax+a)e-x,(a為常數(shù),e為自然對數(shù)的底).
(Ⅰ)若函數(shù)f(x)在x=0時取得極小值,試確定a的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(x),試判斷曲線g(x)只可能與直線2x-3y+m=0、3x-2y+n=0(m,n為確定的常數(shù))中的哪一條相切,并說明理由.

查看答案和解析>>

一彈簧掛著小球作上下振動,經(jīng)研究表明,時間x(s)與小球相對于平衡位置的高度y(cm)=f(x)的函數(shù)關(guān)系式符合某一正弦曲線f(x)=Asin(ωx+φ) (其中Α>0,ω>0,|φ|≤π),且離平衡位置最高點為(2,
2
),由最高點到相鄰下一次圖象交x軸于點(6,0);  (1)求經(jīng)多少時間小球往復振動一次?(2)確定g(x)表達式,使其圖象與f(x)關(guān)于直線x=1對稱.

查看答案和解析>>

已知函數(shù)f(x)=
(x2+ax+a)
ex
,(a為常數(shù),e為自然對數(shù)的底).
(1)令μ(x)=
1
ex
,a=0,求μ'(x)和f'(x);
(2)若函數(shù)f(x)在x=0時取得極小值,試確定a的取值范圍;
[理](3)在(2)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(x),試判斷曲線g(x)只可能與直線2x-3y+m=0、3x-2y+n=0(m,n為確定的常數(shù))中的哪一條相切,并說明理由.

查看答案和解析>>

(2013•東城區(qū)一模)已知函數(shù)f(x)=(x2+ax+a)e-x,(a為常數(shù),e為自然對數(shù)的底).
(Ⅰ)當a=0時,求f′(2);
(Ⅱ)若f(x)在x=0時取得極小值,試確定a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(a),將a換元為x,試判斷曲線y=g(x)是否能與直線3x-2y+m=0( m為確定的常數(shù))相切,并說明理由.

查看答案和解析>>


同步練習冊答案