所以可分別求出三段的平均面積=16. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)某地政府為科技興市,欲將如圖所示的一塊不規(guī)則的非農(nóng)業(yè)用地規(guī)劃建成一個(gè)矩形的高科技工業(yè)園區(qū).已知AB⊥BC,OA∥BC,且AB=BC=4km,AO=2km,曲線段OC是以點(diǎn)O為頂點(diǎn)且開(kāi)口向上的拋物線的一段.如果要使矩形的相鄰兩邊分別落在AB,BC上,且一個(gè)頂點(diǎn)落在曲線段OC上.問(wèn):應(yīng)如何規(guī)劃才能使矩形工業(yè)園區(qū)的用地面積最大?并求出最大的用地面積(精確到0.1km2).

查看答案和解析>>

某地政府為科技興市,欲將如圖所示的一塊不規(guī)則的非農(nóng)業(yè)用地規(guī)劃成一個(gè)矩形高科技工業(yè)園區(qū).已知AB⊥BC,DA∥BC且AB=BC=2AD=4km,曲線段OC是以點(diǎn)O為頂點(diǎn)且開(kāi)口向右的拋物線的一段.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線段的方程;
(2)如果要使矩形的相鄰兩邊分別落在AB、BC上,且一個(gè)頂點(diǎn)落在DC上,問(wèn)如何規(guī)劃才能使矩形工業(yè)園區(qū)的用地面積最大?并求出最大的用地面積(精確到0.1km2).

查看答案和解析>>

某地方政府為科技興市,欲將如圖所示的一塊不規(guī)則的非農(nóng)業(yè)用地規(guī)劃建成一個(gè)矩形的高科技工業(yè)園區(qū),已知AB⊥BC,OA∥BC,且AB=BC=6km,AO=3km,曲線段OC是二次函數(shù)y=ax2圖象的一段,如果要使矩形的相鄰兩邊分別落在AB,BC上,且一個(gè)頂點(diǎn)落在曲線段OC上,問(wèn)應(yīng)如何規(guī)劃才能使矩形工業(yè)園區(qū)BQPN的用地面積最大?并求出最大的用地面積.

查看答案和解析>>

某地政府為科技興市,欲將如圖所示的一塊不規(guī)則的非農(nóng)業(yè)用地規(guī)劃建成一個(gè)矩形的高科技工業(yè)園區(qū).已知,,且,,曲線段是以點(diǎn)為頂點(diǎn)且開(kāi)口向上的拋物線的一段.如果要使矩形的相鄰兩邊分別落

上,且一個(gè)頂點(diǎn)落在曲線段上.問(wèn):應(yīng)如何規(guī)劃才能使矩形工業(yè)園區(qū)的用地面積最大?并求出最大的用地面積(精確到).

 

查看答案和解析>>

(本小題滿分14分)

在綜合實(shí)踐活動(dòng)中,因制作一個(gè)工藝品的需要,某小組設(shè)計(jì)了如圖所示的一個(gè)門(mén)(該圖為軸對(duì)

稱圖形),其中矩形的三邊、、由長(zhǎng)6分米的材料彎折而成,邊的長(zhǎng)

分米();曲線擬從以下兩種曲線中選擇一種:曲線是一段余弦曲線

(在如圖所示的平面直角坐標(biāo)系中,其解析式為),此時(shí)記門(mén)的最高點(diǎn)

邊的距離為;曲線是一段拋物線,其焦點(diǎn)到準(zhǔn)線的距離為,此時(shí)記門(mén)的最高點(diǎn)

邊的距離為.

 (1)試分別求出函數(shù)的表達(dá)式;

(2)要使得點(diǎn)邊的距離最大,應(yīng)選用哪一種曲線?此時(shí),最大值是多少?

 

 

 

 

查看答案和解析>>


同步練習(xí)冊(cè)答案