※86.答案:(a1+a2+-+an) 查看更多

 

題目列表(包括答案和解析)

(2007•揭陽二模)對于n個向量,
a1
,
a2
,…,
an
,若存在n個不全為零的實數(shù)k1,k2,…kn,使得k1
a
1+k2
a
2+…+kn
a
n=0成立,則稱向量
a1
,
a2
,…,
an
,是線性相關(guān)的.按此規(guī)定,能使向量
a1
=(1,0),
a2
=(1,-1),
a3
=(2,2)是線性相關(guān)的實數(shù)k1,k2,k3的值依次為
-4,2,1(答案不唯一)
-4,2,1(答案不唯一)
.(只需寫出一組值即可)

查看答案和解析>>

有下列四個命題:
①函數(shù)y=10-x和函數(shù)y=10x的圖象關(guān)于x軸對稱;
②所有冪函數(shù)的圖象都經(jīng)過點(1,1);
③曲線y=x2與y2=x所圍成的圖形的面積是
1
3

④若{an}是首項大于零的等比數(shù)列,則“a1<a2”是“數(shù)列{an}是遞增數(shù)列”的充要條件.
其中真命題的個數(shù)有( 。

查看答案和解析>>

17、設(shè)a1,a2,…,an 是1,2,…,n 的一個排列,把排在ai 的左邊且比ai 小的數(shù)的個數(shù)稱為ai 的順序數(shù)(i=1,2,…,n).如在排列6,4,5,3,2,1中,5的順序數(shù)為1,3的順序數(shù)為0.則在由1、2、3、4、5、6、7、8這八個數(shù)字構(gòu)成的全排列中,同時滿足8的順序數(shù)為2,7的順序數(shù)為3,5的順序數(shù)為3的不同排列的種數(shù)為
144
.(結(jié)果用數(shù)字表示)

查看答案和解析>>

(2013•豐臺區(qū)一模)設(shè)滿足以下兩個條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“期待數(shù)列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(Ⅰ)分別寫出一個單調(diào)遞增的3階和4階“期待數(shù)列”;
(Ⅱ)若某2k+1(k∈N*)階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式;
(Ⅲ)記n階“期待數(shù)列”的前k項和為Sk(k=1,2,3,…,n),試證:
(1)|Sk|≤
1
2
;     
(2)|
n
i=1
ai
i
|≤
1
2
-
1
2n

查看答案和解析>>

請閱讀下列材料:
若兩個實數(shù)a1,a2滿足a1+a2=1,則
a
2
1
+
a
2
2
1.
2
證明:構(gòu)造函數(shù)f(x)=(x-a12+(x-a22=2x2-2x+a12+a22,因為對一切實數(shù)x,f(x)≥O恒成立,所以△=4-4×2(a12+a22)≤0,即
a
2
1
+
a
•2
2
1
2
根據(jù)上述證明方法,若n個實數(shù)a1,a2,…,an滿足a1+a2+…+an=1時,你能得到的不等式為:
 

查看答案和解析>>


同步練習(xí)冊答案