因此.當(dāng)a>2時(shí).清洗兩次后殘留的農(nóng)藥量較少, 查看更多

 

題目列表(包括答案和解析)

(2013•淄博一模)已知函數(shù)g(x)=(2-a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x).
(Ⅰ)當(dāng)a=0時(shí),求f(x)的極值;
(Ⅱ)當(dāng)a<-2時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)-3<a<-2時(shí),若對(duì)?λ1,λ2∈[1,3],使得|f(λ1)-f(λ2)|<(m+ln3)a-2ln3恒成立,求m的取值范圍.

查看答案和解析>>

設(shè)函數(shù)f(x)=
1
3
(a-1)x3-
1
2
ax2+x
(a∈R)[
(Ⅰ)若y=f(x)在點(diǎn)(1,f(1))處的切線與y軸和直線x-2y=0圍成的三角形面積等于
1
4
,求a的值;
(II)當(dāng)a<2時(shí),討論f(x)的單調(diào)性.

查看答案和解析>>

已知實(shí)數(shù)a滿足0<a≤2,a≠1,設(shè)函數(shù)f (x)=x3x2+ax.

(Ⅰ)當(dāng)a=2時(shí),求f (x)的極小值;

(Ⅱ)若函數(shù)g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的極小值點(diǎn)與f (x)的極小值點(diǎn)相同.求證:g(x)的極大值小于等于

 

查看答案和解析>>

設(shè)函數(shù)數(shù)學(xué)公式(a∈R)[
(Ⅰ)若y=f(x)在點(diǎn)(1,f(1))處的切線與y軸和直線x-2y=0圍成的三角形面積等于數(shù)學(xué)公式,求a的值;
(II)當(dāng)a<2時(shí),討論f(x)的單調(diào)性.

查看答案和解析>>

用水清洗一堆蔬菜,據(jù)科學(xué)測(cè)定,其效果如下:用x單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與這次清洗前殘留的農(nóng)藥量之比為f(x)=
11+x2

(1)因?yàn)閒(0)=
1
1
,所以f(0)的實(shí)際意義是
B
B
(后一個(gè)處請(qǐng)選擇下列之一);
A.表示沒有用水清洗時(shí),蔬菜上的農(nóng)藥量;
B.表示沒有用水清洗時(shí),蔬菜上的農(nóng)藥量沒有變化;
C.表示沒有用水清洗.
(2)現(xiàn)用a(a>0)單位量的水去清洗一堆蔬菜,方案一:用a單位量的水清洗一次;
方案二:把a(bǔ)單位量的水平均分成2份后清洗兩次.試問:哪種方案比較好(即清洗后蔬菜上殘留的農(nóng)藥量比較少)?請(qǐng)說明理由.
(為方便計(jì)算,可以假設(shè)清洗前蔬菜上的農(nóng)藥量為1,清洗后殘留的農(nóng)藥量:方案一的記為W1,方案二的記為W2).

查看答案和解析>>


同步練習(xí)冊(cè)答案