∴(x.y)=(3α-β.α+3β).∴又α+β=1 因此可得x+2y=5評(píng)述:本題主要考查向量法和坐標(biāo)法的相互關(guān)系及轉(zhuǎn)換方法. 查看更多

 

題目列表(包括答案和解析)

設(shè)不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG//AB.

(Ⅰ)求三角形ABC頂點(diǎn)C的軌跡方程;

(Ⅱ)設(shè)頂點(diǎn)C的軌跡為D,已知直線(xiàn)過(guò)點(diǎn)(0,1)并且與曲線(xiàn)D交于P、N兩點(diǎn),若O為坐標(biāo)原點(diǎn),滿(mǎn)足OP⊥ON,求直線(xiàn)的方程.

【解析】

第一問(wèn)因?yàn)樵O(shè)C(x,y)(

……3分

∵M(jìn)是不等邊三解形ABC的外心,∴|MA|=|MC|,即(2)

由(1)(2)得.所以三角形頂點(diǎn)C的軌跡方程為.…6分

第二問(wèn)直線(xiàn)l的方程為y=kx+1

y。 ∵直線(xiàn)l與曲線(xiàn)D交于P、N兩點(diǎn),∴△=

,∴

得到直線(xiàn)方程。

 

查看答案和解析>>

已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過(guò)點(diǎn)C(2,2),且拋物線(xiàn)的焦點(diǎn)為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線(xiàn)l與橢圓E交于A(yíng)、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線(xiàn)l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。第一問(wèn)中,設(shè)出橢圓的方程,然后結(jié)合拋物線(xiàn)的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問(wèn)中設(shè)直線(xiàn)l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線(xiàn)OC斜率為1,由此設(shè)直線(xiàn)l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    當(dāng)m=3時(shí),直線(xiàn)l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時(shí),直線(xiàn)l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>


同步練習(xí)冊(cè)答案