題目列表(包括答案和解析)
(本小題滿分12分)
已知函數(shù)f(x)=mx-,g(x)=2lnx.
(Ⅰ)當(dāng)m=2時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)當(dāng)m=1時,證明方程f(x)=g(x)有且僅有一個實(shí)數(shù)根;
(Ⅲ)若xÎ(1,e]時,不等式f(x)-g(x)<2恒成立,求實(shí)數(shù)m的取值范圍.
(15分) 如圖,已知點(diǎn)P在圓柱OO1的底面⊙O上,AB、A1B1分別為⊙O、⊙O1的直徑,且A1A⊥平面PAB.
(1)求證:BP⊥A1P;
(2)若圓柱OO1的體積V=12π,OA=2,∠AOP=120°,求三棱錐A1-APB的體積.
(3)在AP上是否存在一點(diǎn)M,使異面直線OM與A1B所成角的余弦值為 ?若存在,請指出M的位置,并證明;若不存在,請說明理由.
(1)寫出a2,a3的值,并求出an;
(2)是否存在最大的正數(shù)M,使≥M對一切正整數(shù)n都成立?若存在,試探求出M的值并加以證明;若不存在,請說明理由.
本小題滿分14分)如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,PA⊥平面ABCD,點(diǎn)M、N分別為BC、PA的中點(diǎn),且PA=AD=2,AB=1,AC=.
(Ⅰ)證明:CD⊥平面PAC;
(Ⅱ)在線段PD上是否存在一點(diǎn)E,使得NM∥平面ACE;若存在,求出PE的長;若不存在,說明理由.
設(shè)M是滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實(shí)數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.”
(1)若函數(shù)f(x)為集合M中的任一元素,試證明方程f(x)-x=0只有一個實(shí)根;
(2)判斷函數(shù)g(x)=-+3(x>1)是否是集合M中的元素,并說明理由;
(3)“對于(2)中函數(shù)g(x)定義域內(nèi)的任一區(qū)間[m,n],都存在x0∈[m,n],使得g(n)-g(m)=(n-m)g′(x0)”,請利用函數(shù)y=lnx的圖像說明這一結(jié)論.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com