解:設(shè)z=x+yi(x.y∈R).∵|z|=5.∴x2+y2=25.而(3+4i)z=(3+4i)(x+yi)=(3x-4y)+(4x+3y)i.∴3x-4y+4x+3y=0.得y=7x 查看更多

 

題目列表(包括答案和解析)

已知z=x+yi(x,y∈R),且 2x+y+ilog2x-8=(1-log2y)i,則z=( 。

查看答案和解析>>

已知復(fù)數(shù)z=x+yi(x,y∈R)在復(fù)平面上對應(yīng)的點(diǎn)為M.
(Ⅰ)設(shè)集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機(jī)取一個(gè)數(shù)作為x,從集合Q中隨機(jī)取一個(gè)
數(shù)作為y,求復(fù)數(shù)z為純虛數(shù)的概率;
(Ⅱ)設(shè)x∈[0,3],y∈[0,4],求點(diǎn)M落在不等式組:
x+2y-3≤0
x≥0
y≥0
所表示的平面區(qū)域內(nèi)的概率.

查看答案和解析>>

(2007•上海模擬)設(shè)z=x+yi(x,y∈R),i是虛數(shù)單位,滿足4≤z+
64z
≤10

(1)求證:y=0時(shí)滿足不等式的復(fù)數(shù)不存在.
(2)求出復(fù)數(shù)z對應(yīng)復(fù)平面上的軌跡.

查看答案和解析>>

設(shè)復(fù)數(shù)z=x+yi(x,y∈R)與復(fù)平面上點(diǎn)P(x,y)對應(yīng).
(1)設(shè)復(fù)數(shù)z滿足條件|z+3|+(-1)n|z-3|=3a+(-1)na(其中n∈N*,常數(shù)a∈ (
3
2
 , 3)
),當(dāng)n為奇數(shù)時(shí),動(dòng)點(diǎn)P(x,y)的軌跡為C1;當(dāng)n為偶數(shù)時(shí),動(dòng)點(diǎn)P(x,y)的軌跡為C2,且兩條曲線都經(jīng)過點(diǎn)D(2,
2
)
,求軌跡C1與C2的方程;
(2)在(1)的條件下,軌跡C2上存在點(diǎn)A,使點(diǎn)A與點(diǎn)B(x0,0)(x0>0)的最小距離不小于
2
3
3
,求實(shí)數(shù)x0的取值范圍.

查看答案和解析>>

設(shè)復(fù)數(shù)z=x+yi(x,y∈R),i為虛數(shù)單位,若|z|=1,則x+y的最大值為
2
2

查看答案和解析>>


同步練習(xí)冊答案