附:公共弦方程:設(shè) 查看更多

 

題目列表(包括答案和解析)

圓C1:x2+y2-2x-3=0,圓C2:x2+y2-4x+2y+3=0的公共弦方程是
x-y-3=0(1≤x≤3)
x-y-3=0(1≤x≤3)

查看答案和解析>>

直線x-y-1=0被圓x2+y2=4所截得的弦長(zhǎng)為_______;圓x2+y2=4與圓x2+y2-4x-2y-6=0交于M、N兩點(diǎn),則公共弦方程為_________,公共弦長(zhǎng)|MN|=_________.

查看答案和解析>>

精英家教網(wǎng)如圖,已知橢圓:
x2
25
+
y2
9
=1
,過點(diǎn)F(4,0)作兩條互相垂直的弦AB,CD,設(shè)弦AB,CD的中點(diǎn)分別為M,N.
(1)線段MN是否恒過一個(gè)定點(diǎn)?如果經(jīng)過定點(diǎn),試求出它的坐標(biāo),如果不經(jīng)過定點(diǎn),試說明理由;
(2)求分別以AB,CD為直徑的兩圓公共弦中點(diǎn)的軌跡方程.

查看答案和解析>>

精英家教網(wǎng)如圖,橢圓E:
x22
+y2=1
的右焦點(diǎn)為F,過焦點(diǎn)F作兩條互相垂直的弦AB、CD,設(shè)弦AB、CD的中點(diǎn)分別為M、N.
(Ⅰ)求證:直線MN恒過定點(diǎn)T,并求出T的坐標(biāo);
(Ⅱ)求以AB、CD為直徑的兩圓公共弦中點(diǎn)的軌跡方程,并判斷定點(diǎn)T與軌跡的位置關(guān)系.

查看答案和解析>>

已知⊙O1:(x-1)2+y2=9,⊙O2x2+y2-10x+m2-2m+17=0(m∈R)
(Ⅰ)求⊙O2半徑的最大值;
(Ⅱ)當(dāng)⊙O2半徑最大時(shí),試判斷⊙O1和⊙O2的位置關(guān)系;
(Ⅲ)⊙O2半徑最大時(shí),如果⊙O1和⊙O2相交.
(1)求⊙O1和⊙O2公共弦所在直線l1的方程;
(2)設(shè)直線l1交x軸于點(diǎn)F,拋物線C以坐標(biāo)原點(diǎn)O為頂點(diǎn),以F為焦點(diǎn),直線l2:y=k(x-3)(k≠0)與拋物線C相交于A、B兩點(diǎn),證明:
OA
OB
為定值.

查看答案和解析>>


同步練習(xí)冊(cè)答案