.而右邊四.排列.組合綜合. 查看更多

 

題目列表(包括答案和解析)

我們常用構(gòu)造等式對(duì)同一個(gè)量算兩次的方法來證明組合恒等式,如由等式(1+x)2n=(1+x)n(1+x)n可得,左邊xn的系數(shù)為
C
n
2n
,而右邊(1+x)n(1+x)n=(
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn)(
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn)
,xn的系數(shù)為
C
0
n
C
n
n
+
C
1
n
C
n-1
n
+
C
2
n
C
n-2
n
+…+
C
n
n
C
0
n
=(
C
0
n
)2+(
C
1
n
)2+(
C
2
n
)2+…+(
C
n
n
)2
,由(1+x)2n=(1+x)n(1+x)n恒成立,可得(
C
0
n
)2+(
C
1
n
)2+(
C
2
n
)2+…+(
C
n
n
)2=
C
n
2n

利用上述方法,化簡(jiǎn)(
C
0
2n
)2-(
C
1
2n
)2+(
C
2
2n
)2-(
C
3
2n
)2+…+(
C
2n
2n
)2
=
(-1)n
C
n
2n
(-1)n
C
n
2n

查看答案和解析>>

(2009•閔行區(qū)二模)(文)如圖幾何體是由一個(gè)棱長(zhǎng)為2的正方體ABCD-A1B1C1D1與一個(gè)側(cè)棱長(zhǎng)為2的正四棱錐P-A1B1C1D1組合而成.
(1)求該幾何體的主視圖的面積;
(2)若點(diǎn)E是棱BC的中點(diǎn),求異面直線AE與PA1所成角的大。ńY(jié)果用反三角函數(shù)表示).

查看答案和解析>>

我們常用構(gòu)造等式對(duì)同一個(gè)量算兩次的方法來證明組合恒等式,如由等式可得,左邊的系數(shù)為

而右邊, 的系數(shù)為,

恒成立,可得

利用上述方法,化簡(jiǎn)      

 

查看答案和解析>>

(文)如圖幾何體是由一個(gè)棱長(zhǎng)為2的正方體ABCD-A1B1C1D1與一個(gè)側(cè)棱長(zhǎng)為2的正四棱錐P-A1B1C1D1組合而成.
(1)求該幾何體的主視圖的面積;
(2)若點(diǎn)E是棱BC的中點(diǎn),求異面直線AE與PA1所成角的大。ńY(jié)果用反三角函數(shù)表示).

查看答案和解析>>

我們常用構(gòu)造等式對(duì)同一個(gè)量算兩次的方法來證明組合恒等式,如由等式(1+x)2n=(1+x)n(1+x)n可得,左邊xn的系數(shù)為
Cn2n
,而右邊(1+x)n(1+x)n=(
C0n
+
C1n
x+
C2n
x2+…+
Cnn
xn)(
C0n
+
C1n
x+
C2n
x2+…+
Cnn
xn)
,xn的系數(shù)為
C0n
Cnn
+
C1n
Cn-1n
+
C2n
Cn-2n
+…+
Cnn
C0n
=(
C0n
)2+(
C1n
)2+(
C2n
)2+…+(
Cnn
)2
,由(1+x)2n=(1+x)n(1+x)n恒成立,可得(
C0n
)2+(
C1n
)2+(
C2n
)2+…+(
Cnn
)2=
Cn2n

利用上述方法,化簡(jiǎn)(
C02n
)2-(
C12n
)2+(
C22n
)2-(
C32n
)2+…+(
C2n2n
)2
=______.

查看答案和解析>>


同步練習(xí)冊(cè)答案