16.設(shè)為2008個整數(shù).且().如果存在某個.使得2008位數(shù)被101整除.試證明:對一切.2008位數(shù) 均能被101整除. 解: 根據(jù)已知條件.不妨設(shè)k=1.即2008位數(shù)被101整除.只要能證明2008位數(shù)能被101整除. -------- 事實上.. -------- 從而有. 即有.-------- 因為.所以. 利用上述方法依次類推可以得到 對一切.2008位數(shù)均能被101整除.-- 查看更多

 

題目列表(包括答案和解析)

設(shè)為2008個整數(shù),且)。如果存在某個,使得2008位數(shù)被101整除,試證明:對一切,2008位數(shù) 均能被101整除。

查看答案和解析>>

設(shè)為2008個整數(shù),且)。如果存在某個,使得2008位數(shù)被101整除,試證明:對一切,2008位數(shù) 均能被101整除。

查看答案和解析>>

(2013•內(nèi)江一模)定義區(qū)間(a,b),[a,b),(a,b][a,b]的長度均為d=b-a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如(1,2)∪(3,5)的長度為d=(2-1)+(5-3)=3,用[x]表示不超過x的最大整數(shù),記<x>=x-[x],其中x∈R.設(shè)f(x)=[x]•<x>,g(x)=2x-[x]-2,若d1,d2,d3分別表示不等式f(x)>g(x)、方程f(x)=g(x)、不等式f(x)<g(x)解集的長度,則當(dāng)0≤x≤2012時,有( 。

查看答案和解析>>

15、某種游戲中,黑、黃兩個“電子狗”從棱長為1的正方體ABCD-A1B1C1D1的頂點A出發(fā)沿棱向前爬行,每爬完一條棱稱為“爬完一段”.黑“電子狗”爬行的路線是AA1→A1D1→…,黃“電子狗”爬行的路線是AB→BB1→…,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(其中i是正整數(shù)).設(shè)黑“電子狗”爬完2008段、黃“電子狗”爬完2009段后各自停止在正方體的某個頂點處,這時黑、黃“電子狗”間的距離是
1

查看答案和解析>>

已知等差數(shù)列{an}的前10項和為100,且a4=7,對任意的k∈N*,在ak與ak+1之間插入2k-1個2,得到新數(shù)列{bn},設(shè)Sn、Tn分別是{an}﹑{bn}前n項和.
(Ⅰ)a10是數(shù)列{bn}的第幾項?
(Ⅱ)是否存在正整數(shù)m,使Tm=2008?若存在,求出m的值;若不存在,請說明理由.
(Ⅲ)若am是數(shù)列{bn}的第f(m)項,試比較Tf(m)與Sm+2的大小,并說明理由.

查看答案和解析>>


同步練習(xí)冊答案