2.化歸與轉(zhuǎn)化思想的實(shí)質(zhì)是揭示聯(lián)系.實(shí)現(xiàn)轉(zhuǎn)化.除極簡單的數(shù)學(xué)問題外.每個數(shù)學(xué)問題的解決都是通過轉(zhuǎn)化為已知的問題實(shí)現(xiàn)的.從這個意義上講.解決數(shù)學(xué)問題就是從未知向已知轉(zhuǎn)化的過程.化歸與轉(zhuǎn)化的思想是解決數(shù)學(xué)問題的根本思想.解題的過程實(shí)際上就是一步步轉(zhuǎn)化的過程.數(shù)學(xué)中的轉(zhuǎn)化比比皆是.如未知向已知轉(zhuǎn)化.復(fù)雜問題向簡單問題轉(zhuǎn)化.新知識向舊知識的轉(zhuǎn)化.命題之間的轉(zhuǎn)化.數(shù)與形的轉(zhuǎn)化.空間向平面的轉(zhuǎn)化.高維向低維轉(zhuǎn)化.多元向一元轉(zhuǎn)化.高次向低次轉(zhuǎn)化.超越式向代數(shù)式的轉(zhuǎn)化.函數(shù)與方程的轉(zhuǎn)化等.都是轉(zhuǎn)化思想的體現(xiàn). 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)

已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn)。

(1)求橢圓C的方程;

(2)是否存在平行于OA的直線,使得直線與橢圓C有公共點(diǎn),且直線OA與的距離等于4?若存在,求出直線的方程;若不存在,請說明理由。

【命題意圖】本小題主要考查直線、橢圓等基礎(chǔ)知識,考查運(yùn)算求解能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想。

查看答案和解析>>

(本小題滿分13分)

已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn)。

(1)求橢圓C的方程;

(2)是否存在平行于OA的直線,使得直線與橢圓C有公共點(diǎn),且直線OA與的距離等于4?若存在,求出直線的方程;若不存在,請說明理由。

【命題意圖】本小題主要考查直線、橢圓等基礎(chǔ)知識,考查運(yùn)算求解能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想。

查看答案和解析>>

已知是等差數(shù)列,其前n項(xiàng)和為, 是等比數(shù)列,且 

(I)求數(shù)列的通項(xiàng)公式;

(II)記求證:,

【考點(diǎn)定位】本小題主要考查等差數(shù)列與等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和公式、數(shù)列求和等基礎(chǔ)知識.考查化歸與轉(zhuǎn)化的思想方法.考查運(yùn)算能力、推理論證能力.

 

查看答案和解析>>

已知函數(shù)的定義域?yàn)?sub>,對任意都有

數(shù)列滿足N.證明函數(shù)是奇函數(shù);求數(shù)列的通項(xiàng)公式;令N, 證明:當(dāng)時,.

(本小題主要考查函數(shù)、數(shù)列、不等式等知識,  考查化歸與轉(zhuǎn)化、分類與整合的數(shù)學(xué)思想方法,以及抽象概括能力、推理論證能力、運(yùn)算求解能力和創(chuàng)新意識)

查看答案和解析>>

(2009四川卷理)(本小題滿分14分)

設(shè)數(shù)列的前項(xiàng)和為,對任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項(xiàng)公式;

(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對任意正整數(shù)都有;

(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

本小題主要考查數(shù)列、不等式等基礎(chǔ)知識、考查化歸思想、分類整合思想,以及推理論證、分析與解決問題的能力。

查看答案和解析>>


同步練習(xí)冊答案