解:(I)已知是奇數(shù).假設(shè)是奇數(shù).其中為正整數(shù). 則由遞推關(guān)系得是奇數(shù). 根據(jù)數(shù)學(xué)歸納法.對(duì)任何.都是奇數(shù). 由知.當(dāng)且僅當(dāng)或. 另一方面.若則,若.則 根據(jù)數(shù)學(xué)歸納法. 綜合所述.對(duì)一切都有的充要條件是或. 由得于是或. 因?yàn)樗运械木笥?.因此與同號(hào). 根據(jù)數(shù)學(xué)歸納法..與同號(hào). 因此.對(duì)一切都有的充要條件是或. 查看更多

 

題目列表(包括答案和解析)

已知是二次函數(shù),不等式的解集是在區(qū)間上的最大值是12。

    (I)求的解析式;

    (II)是否存在實(shí)數(shù)使得方程在區(qū)間內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根?若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列

(Ⅰ)若 ,是否存在,有?請(qǐng)說明理由;

(Ⅱ)若(a、q為常數(shù),且aq0)對(duì)任意m存在k,有,試求a、q滿足的充要條件;

(Ⅲ)若試確定所有的p,使數(shù)列中存在某個(gè)連續(xù)p項(xiàng)的和式數(shù)列中的一項(xiàng),請(qǐng)證明.

【解析】第一問中,由,整理后,可得、,為整數(shù)不存在、,使等式成立。

(2)中當(dāng)時(shí),則

,其中是大于等于的整數(shù)

反之當(dāng)時(shí),其中是大于等于的整數(shù),則,

顯然,其中

、滿足的充要條件是,其中是大于等于的整數(shù)

(3)中設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),

當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理

當(dāng)時(shí),符合題意。當(dāng),為奇數(shù)時(shí),

結(jié)合二項(xiàng)式定理得到結(jié)論。

解(1)由,整理后,可得、,為整數(shù)不存在、,使等式成立。

(2)當(dāng)時(shí),則,其中是大于等于的整數(shù)反之當(dāng)時(shí),其中是大于等于的整數(shù),則

顯然,其中

、滿足的充要條件是,其中是大于等于的整數(shù)

(3)設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),

當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理

當(dāng)時(shí),符合題意。當(dāng),為奇數(shù)時(shí),

   由,得

當(dāng)為奇數(shù)時(shí),此時(shí),一定有使上式一定成立。當(dāng)為奇數(shù)時(shí),命題都成立

 

查看答案和解析>>

(06年福建卷文)(12分)

已知是二次函數(shù),不等式的解集是在區(qū)間上的最大值是12。

       (I)求的解析式;

       (II)是否存在實(shí)數(shù)使得方程在區(qū)間內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根?若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

已知數(shù)學(xué)公式是R上奇函數(shù)
(I)求a,b的值;
(II)解不等式數(shù)學(xué)公式

查看答案和解析>>

已知是定義在[-1,1]上的奇函數(shù),且.若時(shí),有.

(I)證明:在[-1,1]上是增函數(shù);

(Ⅱ)解不等式.

查看答案和解析>>


同步練習(xí)冊(cè)答案