2009年河北省初中畢業(yè)生升學(xué)文化課模擬考試數(shù)學(xué)試卷卷Ⅱ注意事項: 查看更多

 

題目列表(包括答案和解析)

12、為參加2009年“天津市初中畢業(yè)生升學(xué)體育考試”,小剛同學(xué)進(jìn)行了刻苦的練習(xí),在投擲實心球時,測得5次投擲的成績(單位:m)為:8,8.5,9,8.5,9.2.這組數(shù)據(jù)的眾數(shù)、中位數(shù)依次是( 。

查看答案和解析>>

精英家教網(wǎng)2009年寧波市初中畢業(yè)生升學(xué)體育集中測試項目包括體能(耐力)類項目和速度(跳躍、力量、技能)類項目.體能類項目從游泳和中長跑中任選一項,速度類項目從立定跳遠(yuǎn)、50米跑等6項中任選一項.某校九年級共有200名女生在速度類項目中選擇了立定跳遠(yuǎn),現(xiàn)從這200名女生中隨機(jī)抽取10名女生進(jìn)行測試,下面是她們測試結(jié)果的條形圖.(另附:九年級女生立定跳遠(yuǎn)的計分標(biāo)準(zhǔn))
九年級女生立定跳遠(yuǎn)計分標(biāo)準(zhǔn):
成績(cm)  197  189  183  174 
分值(分)   10   9   8   7
(注:不到上限,則按下限計分,滿分10分)
(1)求這10名女生在本次測試中,立定跳遠(yuǎn)距離的極差,立定跳遠(yuǎn)得分的眾數(shù)和平均數(shù);
(2)請你估計該校選擇立定跳遠(yuǎn)的200名女生得滿分的人數(shù).

查看答案和解析>>

為參加2009年“天津市初中畢業(yè)生升學(xué)體育考試”,小剛同學(xué)進(jìn)行了刻苦的練習(xí),在投擲實心球時,測得5次投擲的成績(單位:m)為:8,8.5,9,8.5,9.2.這組數(shù)據(jù)的眾數(shù)、中位數(shù)依次是( )
A.8.5,8.5
B.8.5,9
C.8.5,8.75
D.8.64,9

查看答案和解析>>

(2009•天津)為參加2009年“天津市初中畢業(yè)生升學(xué)體育考試”,小剛同學(xué)進(jìn)行了刻苦的練習(xí),在投擲實心球時,測得5次投擲的成績(單位:m)為:8,8.5,9,8.5,9.2.這組數(shù)據(jù)的眾數(shù)、中位數(shù)依次是( )
A.8.5,8.5
B.8.5,9
C.8.5,8.75
D.8.64,9

查看答案和解析>>

(2009•天津)為參加2009年“天津市初中畢業(yè)生升學(xué)體育考試”,小剛同學(xué)進(jìn)行了刻苦的練習(xí),在投擲實心球時,測得5次投擲的成績(單位:m)為:8,8.5,9,8.5,9.2.這組數(shù)據(jù)的眾數(shù)、中位數(shù)依次是( )
A.8.5,8.5
B.8.5,9
C.8.5,8.75
D.8.64,9

查看答案和解析>>

一.1.C;  2.C; 3.C;  4.B;  5.D;  6.B;  7.A; 8.B;  9.A;  10.C。

二.11.x≥2;   12.1;   13.25°; 。保矗保矗; 。保担保;  

16.180;  。保罚,③;  。保福

三.19解:原式?????????????????????????????????????????????????????????????????????????? 2分

???????????????????????????????????????????????????????????????????????????????????????????? 5分

當(dāng)時,原式.??????????????????????????????????????????????????????? 7分.

20.解:(1)(名),

本次調(diào)查了90名學(xué)生.?????????????????????????????????????????????????????????????????????????????????????? (2分)

補全的條形統(tǒng)計圖如下:

文本框: 知道文本框: 記不清文本框: 不知道(名),

估計這所學(xué)校有1500名學(xué)生知道母親的生日.??????????????????????????????????????????????????? (6分)

(3)略(語言表述積極進(jìn)取,健康向上即可得分).?????????????????????????????????????????????? (7分)

21.(本題滿分8分)

解:(1)如圖,由題意得,∠EAD=45°,∠FBD=30°.

∴ ∠EAC=∠EAD+∠DAC =45°+15°=60°.

∵  AE∥BF∥CD,

∴  ∠FBC=∠EAC=60°.

∴ ∠DBC=30°. ???????????????????????????????????????? 2分

又∵ ∠DBC=∠DAB+∠ADB,

  ∴ ∠ADB=15°.

∴ ∠DAB=∠ADB. ∴  BD=AB=2.

  即B,D之間的距離為2km.???????????????????????????????????????????????????????????????????????????????? 4分

(2)過B作BO⊥DC,交其延長線于點O,

  在Rt△DBO中,BD=2,∠DBO=60°.

  ∴ DO=2×sin60°=2×,BO=2×cos60°=1.??????????????????????????????????????????????????? 6分

  在Rt△CBO中,∠CBO=30°,CO=BOtan30°=

  ∴ CD=DO-CO=(km).

  即C,D之間的距離為km. ????????????????????????????????????????????????????????????????????????? 8分

 

22.解:(1)

(2)290,甲,20.????????????????????????????????????????????????????????????????????????????????? 6分(每空1分)

(3)在5月17日,甲廠生產(chǎn)帳篷50頂,乙廠生產(chǎn)帳篷30頂.???????????????????????????????????? 6分

設(shè)乙廠每天生產(chǎn)帳篷的數(shù)量提高了,則?????????????????????????????????????? 7分

答:乙廠每天生產(chǎn)帳篷的數(shù)量提高了.?????????????????????????????????????????????????????????????????? 8分

 

 

23.解:(1)① 等邊三角形;②重疊三角形的面積為.?????????????????????????? 5分

(2)用含的代數(shù)式表示重疊三角形的面積為;?????????????????????????? 7分

的取值范圍為..................................................8分

(3)能;t=2。.............................................................10分.

24.本小題滿分10分.

(Ⅰ)證明  將△沿直線對折,得△,連,

則△≌△.    ????????????????????????????????????????????????????????????????????????????????????????? 1分

,,

又由,得 .  ????????????????????????????????????????? 2分

,

,

. ??????????????????????????????????????????????????????????????????????????????????????????????????? 3分

∴△≌△.    ???????????????????????????????????????????????????????????????????????????????????????????? 4分

,

.???????????????????????????????????????????????????????????? 5分

∴在Rt△中,由勾股定理,

.即. ??????????????????????????????????????????????????????? 6分

(Ⅱ)關(guān)系式仍然成立.  ???????????????????????????????????????????????????????????? 7分

證明  將△沿直線對折,得△,連,

則△≌△. ???????????????????????????????????????????????????? 8分

,,

,

又由,得

,

.   ??????????????????????????????????????????????????????????????????????????????????????????????? 8分

∴△≌△

,,,

.  

∴在Rt△中,由勾股定理,

.即.????????????????????????????????????????????????????????? 9分

(3).能;在直線AB上取點M,N使∠MCN=45°......................10分

25.(本題滿分12分)

解:(1)設(shè)正方形的邊長為cm,則

.?????????????????????????????????????????????????????????????????????????????????????????????? 1分

解得(不合題意,舍去),

剪去的正方形的邊長為1cm.???????????????????????????????????????????????????????????????????????????????????? 3分

(注:通過觀察、驗證直接寫出正確結(jié)果給3分)

(2)有側(cè)面積最大的情況.

設(shè)正方形的邊長為cm,盒子的側(cè)面積為cm2

的函數(shù)關(guān)系式為:

.????????????????????????????????????????????????????????????????????????????????????????????????????? 5分

改寫為

當(dāng)時,

即當(dāng)剪去的正方形的邊長為2.25cm時,長方體盒子的側(cè)面積最大為40.5cm2.?????????????? 7分

(3)有側(cè)面積最大的情況.

設(shè)正方形的邊長為cm,盒子的側(cè)面積為cm2

若按圖1所示的方法剪折,則的函數(shù)關(guān)系式為:

當(dāng)時,.??????????????????????????????????? 9分

若按圖2所示的方法剪折,則的函數(shù)關(guān)系式為:

當(dāng)時,.??????????????????????????????????????????????????????????????????????????????????????? 11分

比較以上兩種剪折方法可以看出,按圖2所示的方法剪折得到的盒子側(cè)面積最大,即當(dāng)剪去的正方形的邊長為cm時,折成的有蓋長方體盒子的側(cè)面積最大,最大面積為cm2

說明:解答題各小題只給了一種解答及評分說明,其他解法只要步驟合理,解答正確,均應(yīng)給出相應(yīng)分?jǐn)?shù).

26.(本小題滿分12分)

解:(1)在Rt△ABC中,,

由題意知:AP = 5-t,AQ = 2t,

若PQ∥BC,則△APQ ∽△ABC,

,

,

.                                 ??????????????????????????????????????????????????????? 3′

(2)過點P作PH⊥AC于H.

∵△APH ∽△ABC,

,

,

,

.       ??????????????????????????????????????????? 6′

(3)若PQ把△ABC周長平分,

則AP+AQ=BP+BC+CQ.

,   

解得:

若PQ把△ABC面積平分,

,  即-+3t=3.

∵ t=1代入上面方程不成立,

∴不存在這一時刻t,使線段PQ把Rt△ACB的周長和面積同時平分.???????????????? 9′

(4)過點P作PM⊥AC于M,PN⊥BC于N,

若四邊形PQP ′ C是菱形,那么PQ=PC.

∵PM⊥AC于M,

∴QM=CM.

∵PN⊥BC于N,易知△PBN∽△ABC.

,  ∴

,

,

解得:

∴當(dāng)時,四邊形PQP ′ C 是菱形.     

此時, ,

在Rt△PMC中,,

∴菱形PQP ′ C邊長為.?????????????????????????????????????????????????????????????????????????? 12′

 

 

 

 


同步練習(xí)冊答案