2.答卷Ⅱ時(shí).將答案用藍(lán)色.黑色鋼筆或圓珠筆直接寫(xiě)在試卷上. 查看更多

 

題目列表(包括答案和解析)

(2013•青島)在前面的學(xué)習(xí)中,我們通過(guò)對(duì)同一面積的不同表達(dá)和比較,根據(jù)圖1和圖2發(fā)現(xiàn)并驗(yàn)證了平方差公式和完全平方公式.
這種利用面積關(guān)系解決問(wèn)題的方法,使抽象的數(shù)量關(guān)系因幾何直觀而形象化.

【研究速算】
提出問(wèn)題:47×43,56×54,79×71,…是一些十位數(shù)字相同,且個(gè)位數(shù)字之和是10的兩個(gè)兩位數(shù)相乘的算式,是否可以找到一種速算方法?
幾何建模:
用矩形的面積表示兩個(gè)正數(shù)的乘積,以47×43為例:
(1)畫(huà)長(zhǎng)為47,寬為43的矩形,如圖3,將這個(gè)47×43的矩形從右邊切下長(zhǎng)40,寬3的一條,拼接到原矩形上面.
(2)分析:原矩形面積可以有兩種不同的表達(dá)方式:47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個(gè)位數(shù)字3與7的積,構(gòu)成運(yùn)算結(jié)果.
歸納提煉:
兩個(gè)十位數(shù)字相同,并且個(gè)位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)
十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個(gè)個(gè)位數(shù)字的積,構(gòu)成運(yùn)算結(jié)果
十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個(gè)個(gè)位數(shù)字的積,構(gòu)成運(yùn)算結(jié)果

【研究方程】
提出問(wèn)題:怎樣圖解一元二次方程x2+2x-35=0(x>0)?
幾何建模:
(1)變形:x(x+2)=35.
(2)畫(huà)四個(gè)長(zhǎng)為x+2,寬為x的矩形,構(gòu)造圖4
(3)分析:圖中的大正方形面積可以有兩種不同的表達(dá)方式,(x+x+2)2或四個(gè)長(zhǎng)x+2,寬x的矩形面積之和,加上中間邊長(zhǎng)為2的小正方形面積.
即(x+x+2)2=4x(x+2)+22
∵x(x+2)=35
∴(x+x+2)2=4×35+22
∴(2x+2)2=144
∵x>0
∴x=5
歸納提煉:求關(guān)于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
要求參照上述研究方法,畫(huà)出示意圖,并寫(xiě)出幾何建模步驟(用鋼筆或圓珠筆畫(huà)圖,并注明相關(guān)線段的長(zhǎng))
【研究不等關(guān)系】
提出問(wèn)題:怎樣運(yùn)用矩形面積表示(y+3)(y+2)與2y+5的大小關(guān)系(其中y>0)?
幾何建模:
(1)畫(huà)長(zhǎng)y+3,寬y+2的矩形,按圖5方式分割
(2)變形:2y+5=(y+3)+(y+2)
(3)分析:圖5中大矩形的面積可以表示為(y+3)(y+2);陰影部分面積可以表示為(y+3)×1,畫(huà)點(diǎn)部分部分的面積可表示為y+2,由圖形的部分與整體的關(guān)系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
歸納提煉:
當(dāng)a>2,b>2時(shí),表示ab與a+b的大小關(guān)系.
根據(jù)題意,設(shè)a=2+m,b=2+n(m>0,n>0),要求參照上述研究方法,畫(huà)出示意圖,并寫(xiě)出幾何建模步驟(用鋼筆或圓珠筆畫(huà)圖并注明相關(guān)線段的長(zhǎng))

查看答案和解析>>

在前面的學(xué)習(xí)中,我們通過(guò)對(duì)同一面積的不同表達(dá)和比較,根據(jù)圖①和圖②發(fā)現(xiàn)并驗(yàn)證了平方差公式和完全平方公式

這種利用面積關(guān)系解決問(wèn)題的方法,使抽象的數(shù)量關(guān)系因集合直觀而形象化。

【研究速算】

提出問(wèn)題:47×43,56×54,79×71,……是一些十位數(shù)字相同,且個(gè)位數(shù)字之和是10的兩個(gè)兩位數(shù)相乘的算式,是否可以找到一種速算方法?

幾何建模:

用矩形的面積表示兩個(gè)正數(shù)的乘積,以47×43為例:

(1)畫(huà)長(zhǎng)為47,寬為43的矩形,如圖③,將這個(gè)47×43的矩形從右邊切下長(zhǎng)40,寬3的一條,拼接到原矩形的上面。

(2)分析:原矩形面積可以有兩種不同的表達(dá)方式,47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個(gè)位數(shù)字3與7的積,構(gòu)成運(yùn)算結(jié)果。

歸納提煉:

兩個(gè)十位數(shù)字相同,并且個(gè)位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)        .

【研究方程】

提出問(wèn)題:怎么圖解一元二次方程

幾何建模:

(1)變形:

(2)畫(huà)四個(gè)長(zhǎng)為,寬為的矩形,構(gòu)造圖④

(3)分析:圖中的大正方形面積可以有兩種不同的表達(dá)方式,或四個(gè)長(zhǎng),寬的矩形之和,加上中間邊長(zhǎng)為2的小正方形面積

即:

歸納提煉:求關(guān)于的一元二次方程的解

要求參照上述研究方法,畫(huà)出示意圖,并寫(xiě)出幾何建模步驟(用鋼筆或圓珠筆畫(huà)圖,并標(biāo)注相關(guān)線段的長(zhǎng))

【研究不等關(guān)系】

提出問(wèn)題:怎么運(yùn)用矩形面積表示的大小關(guān)系(其中)?

幾何建模:

(1)畫(huà)長(zhǎng),寬的矩形,按圖⑤方式分割

(2)變形:

(3)分析:圖⑤中大矩形的面積可以表示為;陰影部分面積可以表示為,

畫(huà)點(diǎn)部分的面積可表示為,由圖形的部分與整體的關(guān)系可知:,即

歸納提煉:

當(dāng),時(shí),表示的大小關(guān)系

根據(jù)題意,設(shè),,要求參照上述研究方法,畫(huà)出示意圖,并寫(xiě)出幾何建模步驟(用鋼筆或圓珠筆畫(huà)圖,并標(biāo)注相關(guān)線段的長(zhǎng))

 

查看答案和解析>>

在前面的學(xué)習(xí)中,我們通過(guò)對(duì)同一面積的不同表達(dá)和比較,根據(jù)圖1和圖2發(fā)現(xiàn)并驗(yàn)證了平方差公式和完全平方公式.
這種利用面積關(guān)系解決問(wèn)題的方法,使抽象的數(shù)量關(guān)系因幾何直觀而形象化.

【研究速算】
提出問(wèn)題:47×43,56×54,79×71,…是一些十位數(shù)字相同,且個(gè)位數(shù)字之和是10的兩個(gè)兩位數(shù)相乘的算式,是否可以找到一種速算方法?
幾何建模:
用矩形的面積表示兩個(gè)正數(shù)的乘積,以47×43為例:
(1)畫(huà)長(zhǎng)為47,寬為43的矩形,如圖3,將這個(gè)47×43的矩形從右邊切下長(zhǎng)40,寬3的一條,拼接到原矩形上面.
(2)分析:原矩形面積可以有兩種不同的表達(dá)方式:47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個(gè)位數(shù)字3與7的積,構(gòu)成運(yùn)算結(jié)果.
歸納提煉:
兩個(gè)十位數(shù)字相同,并且個(gè)位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)______.
【研究方程】
提出問(wèn)題:怎樣圖解一元二次方程x2+2x-35=0(x>0)?
幾何建模:
(1)變形:x(x+2)=35.
(2)畫(huà)四個(gè)長(zhǎng)為x+2,寬為x的矩形,構(gòu)造圖4
(3)分析:圖中的大正方形面積可以有兩種不同的表達(dá)方式,(x+x+2)2或四個(gè)長(zhǎng)x+2,寬x的矩形面積之和,加上中間邊長(zhǎng)為2的小正方形面積.
即(x+x+2)2=4x(x+2)+22
∵x(x+2)=35
∴(x+x+2)2=4×35+22
∴(2x+2)2=144
∵x>0
∴x=5
歸納提煉:求關(guān)于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
要求參照上述研究方法,畫(huà)出示意圖,并寫(xiě)出幾何建模步驟(用鋼筆或圓珠筆畫(huà)圖,并注明相關(guān)線段的長(zhǎng))
【研究不等關(guān)系】
提出問(wèn)題:怎樣運(yùn)用矩形面積表示(y+3)(y+2)與2y+5的大小關(guān)系(其中y>0)?
幾何建模:
(1)畫(huà)長(zhǎng)y+3,寬y+2的矩形,按圖5方式分割
(2)變形:2y+5=(y+3)+(y+2)
(3)分析:圖5中大矩形的面積可以表示為(y+3)(y+2);陰影部分面積可以表示為(y+3)×1,畫(huà)點(diǎn)部分部分的面積可表示為y+2,由圖形的部分與整體的關(guān)系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
歸納提煉:
當(dāng)a>2,b>2時(shí),表示ab與a+b的大小關(guān)系.
根據(jù)題意,設(shè)a=2+m,b=2+n(m>0,n>0),要求參照上述研究方法,畫(huà)出示意圖,并寫(xiě)出幾何建模步驟(用鋼筆或圓珠筆畫(huà)圖并注明相關(guān)線段的長(zhǎng))

查看答案和解析>>

在前面的學(xué)習(xí)中,我們通過(guò)對(duì)同一面積的不同表達(dá)和比較,根據(jù)圖1和圖2發(fā)現(xiàn)并驗(yàn)證了平方差公式和完全平方公式.
這種利用面積關(guān)系解決問(wèn)題的方法,使抽象的數(shù)量關(guān)系因幾何直觀而形象化.

【研究速算】
提出問(wèn)題:47×43,56×54,79×71,…是一些十位數(shù)字相同,且個(gè)位數(shù)字之和是10的兩個(gè)兩位數(shù)相乘的算式,是否可以找到一種速算方法?
幾何建模:
用矩形的面積表示兩個(gè)正數(shù)的乘積,以47×43為例:
(1)畫(huà)長(zhǎng)為47,寬為43的矩形,如圖3,將這個(gè)47×43的矩形從右邊切下長(zhǎng)40,寬3的一條,拼接到原矩形上面.
(2)分析:原矩形面積可以有兩種不同的表達(dá)方式:47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個(gè)位數(shù)字3與7的積,構(gòu)成運(yùn)算結(jié)果.
歸納提煉:
兩個(gè)十位數(shù)字相同,并且個(gè)位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)______.
【研究方程】
提出問(wèn)題:怎樣圖解一元二次方程x2+2x-35=0(x>0)?
幾何建模:
(1)變形:x(x+2)=35.
(2)畫(huà)四個(gè)長(zhǎng)為x+2,寬為x的矩形,構(gòu)造圖4
(3)分析:圖中的大正方形面積可以有兩種不同的表達(dá)方式,(x+x+2)2或四個(gè)長(zhǎng)x+2,寬x的矩形面積之和,加上中間邊長(zhǎng)為2的小正方形面積.
即(x+x+2)2=4x(x+2)+22
∵x(x+2)=35
∴(x+x+2)2=4×35+22
∴(2x+2)2=144
∵x>0
∴x=5
歸納提煉:求關(guān)于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
要求參照上述研究方法,畫(huà)出示意圖,并寫(xiě)出幾何建模步驟(用鋼筆或圓珠筆畫(huà)圖,并注明相關(guān)線段的長(zhǎng))
【研究不等關(guān)系】
提出問(wèn)題:怎樣運(yùn)用矩形面積表示(y+3)(y+2)與2y+5的大小關(guān)系(其中y>0)?
幾何建模:
(1)畫(huà)長(zhǎng)y+3,寬y+2的矩形,按圖5方式分割
(2)變形:2y+5=(y+3)+(y+2)
(3)分析:圖5中大矩形的面積可以表示為(y+3)(y+2);陰影部分面積可以表示為(y+3)×1,畫(huà)點(diǎn)部分部分的面積可表示為y+2,由圖形的部分與整體的關(guān)系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
歸納提煉:
當(dāng)a>2,b>2時(shí),表示ab與a+b的大小關(guān)系.
根據(jù)題意,設(shè)a=2+m,b=2+n(m>0,n>0),要求參照上述研究方法,畫(huà)出示意圖,并寫(xiě)出幾何建模步驟(用鋼筆或圓珠筆畫(huà)圖并注明相關(guān)線段的長(zhǎng))

查看答案和解析>>

在物理實(shí)驗(yàn)中,當(dāng)電流在一定時(shí)間段內(nèi)正常通過(guò)電子元件時(shí),每個(gè)電子元件的狀態(tài)有兩種可能:通電或斷開(kāi),并且這兩種狀態(tài)的可能性相等.

(1)如圖1,當(dāng)只有1個(gè)電子元件時(shí),P、Q之間電流通過(guò)的概率是
1
2
1
2

(2)如圖2,當(dāng)有2個(gè)電子元件a、b并聯(lián)時(shí),請(qǐng)你用樹(shù)狀圖(或列表法)表示圖中P、Q 之間電流能否通過(guò)的所有可能情況,并求出P、Q之間電流通過(guò)的概率;
(3)如圖3,當(dāng)有3個(gè)電子元件并聯(lián)時(shí),P、Q之間電流通過(guò)的概率是
7
8
7
8

查看答案和解析>>

一.1.C;  2.C; 3.C;  4.B;  5.D;  6.B;  7.A; 8.B;  9.A;  10.C。

二.11.x≥2;   12.1;   13.25°; 。保矗保矗; 。保担保;  

16.180;  。保罚,③;   18.

三.19解:原式?????????????????????????????????????????????????????????????????????????? 2分

???????????????????????????????????????????????????????????????????????????????????????????? 5分

當(dāng)時(shí),原式.??????????????????????????????????????????????????????? 7分.

20.解:(1)(名),

本次調(diào)查了90名學(xué)生.?????????????????????????????????????????????????????????????????????????????????????? (2分)

補(bǔ)全的條形統(tǒng)計(jì)圖如下:

<sup id="m6ics"></sup>
  • <li id="m6ics"><input id="m6ics"></input></li>
    文本框: 知道文本框: 記不清文本框: 不知道(名),

    估計(jì)這所學(xué)校有1500名學(xué)生知道母親的生日.??????????????????????????????????????????????????? (6分)

    (3)略(語(yǔ)言表述積極進(jìn)取,健康向上即可得分).?????????????????????????????????????????????? (7分)

    21.(本題滿分8分)

    解:(1)如圖,由題意得,∠EAD=45°,∠FBD=30°.

    ∴ ∠EAC=∠EAD+∠DAC =45°+15°=60°.

    ∵  AE∥BF∥CD,

    ∴  ∠FBC=∠EAC=60°.

    ∴ ∠DBC=30°. ???????????????????????????????????????? 2分

    又∵ ∠DBC=∠DAB+∠ADB,

      ∴ ∠ADB=15°.

    ∴ ∠DAB=∠ADB. ∴  BD=AB=2.

      即B,D之間的距離為2km.???????????????????????????????????????????????????????????????????????????????? 4分

    (2)過(guò)B作BO⊥DC,交其延長(zhǎng)線于點(diǎn)O,

      在Rt△DBO中,BD=2,∠DBO=60°.

      ∴ DO=2×sin60°=2×,BO=2×cos60°=1.??????????????????????????????????????????????????? 6分

      在Rt△CBO中,∠CBO=30°,CO=BOtan30°=,

      ∴ CD=DO-CO=(km).

      即C,D之間的距離為km. ????????????????????????????????????????????????????????????????????????? 8分

     

    22.解:(1)

    (2)290,甲,20.????????????????????????????????????????????????????????????????????????????????? 6分(每空1分)

    (3)在5月17日,甲廠生產(chǎn)帳篷50頂,乙廠生產(chǎn)帳篷30頂.???????????????????????????????????? 6分

    設(shè)乙廠每天生產(chǎn)帳篷的數(shù)量提高了,則?????????????????????????????????????? 7分

    答:乙廠每天生產(chǎn)帳篷的數(shù)量提高了.?????????????????????????????????????????????????????????????????? 8分

     

     

    23.解:(1)① 等邊三角形;②重疊三角形的面積為.?????????????????????????? 5分

    (2)用含的代數(shù)式表示重疊三角形的面積為;?????????????????????????? 7分

    的取值范圍為..................................................8分

    (3)能;t=2。.............................................................10分.

    24.本小題滿分10分.

    (Ⅰ)證明  將△沿直線對(duì)折,得△,連

    則△≌△.    ????????????????????????????????????????????????????????????????????????????????????????? 1分

    ,,

    又由,得 .  ????????????????????????????????????????? 2分

    ,

    ,

    . ??????????????????????????????????????????????????????????????????????????????????????????????????? 3分

    ,

    ∴△≌△.    ???????????????????????????????????????????????????????????????????????????????????????????? 4分

    ,

    .???????????????????????????????????????????????????????????? 5分

    ∴在Rt△中,由勾股定理,

    .即. ??????????????????????????????????????????????????????? 6分

    (Ⅱ)關(guān)系式仍然成立.  ???????????????????????????????????????????????????????????? 7分

    證明  將△沿直線對(duì)折,得△,連

    則△≌△. ???????????????????????????????????????????????????? 8分

    ,,

    ,

    又由,得

    .   ??????????????????????????????????????????????????????????????????????????????????????????????? 8分

    ,

    ∴△≌△

    ,,

    .  

    ∴在Rt△中,由勾股定理,

    .即.????????????????????????????????????????????????????????? 9分

    (3).能;在直線AB上取點(diǎn)M,N使∠MCN=45°......................10分

    25.(本題滿分12分)

    解:(1)設(shè)正方形的邊長(zhǎng)為cm,則

    .?????????????????????????????????????????????????????????????????????????????????????????????? 1分

    解得(不合題意,舍去),

    剪去的正方形的邊長(zhǎng)為1cm.???????????????????????????????????????????????????????????????????????????????????? 3分

    (注:通過(guò)觀察、驗(yàn)證直接寫(xiě)出正確結(jié)果給3分)

    (2)有側(cè)面積最大的情況.

    設(shè)正方形的邊長(zhǎng)為cm,盒子的側(cè)面積為cm2

    的函數(shù)關(guān)系式為:

    .????????????????????????????????????????????????????????????????????????????????????????????????????? 5分

    改寫(xiě)為

    當(dāng)時(shí),

    即當(dāng)剪去的正方形的邊長(zhǎng)為2.25cm時(shí),長(zhǎng)方體盒子的側(cè)面積最大為40.5cm2.?????????????? 7分

    (3)有側(cè)面積最大的情況.

    設(shè)正方形的邊長(zhǎng)為cm,盒子的側(cè)面積為cm2

    若按圖1所示的方法剪折,則的函數(shù)關(guān)系式為:

    當(dāng)時(shí),.??????????????????????????????????? 9分

    若按圖2所示的方法剪折,則的函數(shù)關(guān)系式為:

    當(dāng)時(shí),.??????????????????????????????????????????????????????????????????????????????????????? 11分

    比較以上兩種剪折方法可以看出,按圖2所示的方法剪折得到的盒子側(cè)面積最大,即當(dāng)剪去的正方形的邊長(zhǎng)為cm時(shí),折成的有蓋長(zhǎng)方體盒子的側(cè)面積最大,最大面積為cm2

    說(shuō)明:解答題各小題只給了一種解答及評(píng)分說(shuō)明,其他解法只要步驟合理,解答正確,均應(yīng)給出相應(yīng)分?jǐn)?shù).

    26.(本小題滿分12分)

    解:(1)在Rt△ABC中,

    由題意知:AP = 5-t,AQ = 2t,

    若PQ∥BC,則△APQ ∽△ABC,

    ,

    ,

    .                                 ??????????????????????????????????????????????????????? 3′

    (2)過(guò)點(diǎn)P作PH⊥AC于H.

    ∵△APH ∽△ABC,

    ,

    ,

    ,

    .       ??????????????????????????????????????????? 6′

    (3)若PQ把△ABC周長(zhǎng)平分,

    則AP+AQ=BP+BC+CQ.

    ,   

    解得:

    若PQ把△ABC面積平分,

    ,  即-+3t=3.

    ∵ t=1代入上面方程不成立,

    ∴不存在這一時(shí)刻t,使線段PQ把Rt△ACB的周長(zhǎng)和面積同時(shí)平分.???????????????? 9′

    (4)過(guò)點(diǎn)P作PM⊥AC于M,PN⊥BC于N,

    若四邊形PQP ′ C是菱形,那么PQ=PC.

    ∵PM⊥AC于M,

    ∴QM=CM.

    ∵PN⊥BC于N,易知△PBN∽△ABC.

    ,  ∴,

    ,

    ,

    解得:

    ∴當(dāng)時(shí),四邊形PQP ′ C 是菱形.     

    此時(shí), 

    在Rt△PMC中,,

    ∴菱形PQP ′ C邊長(zhǎng)為.?????????????????????????????????????????????????????????????????????????? 12′

     

     

     

     


    同步練習(xí)冊(cè)答案
  • <tfoot id="m6ics"><wbr id="m6ics"></wbr></tfoot>
    <abbr id="m6ics"><dl id="m6ics"></dl></abbr><sup id="m6ics"><bdo id="m6ics"></bdo></sup>
  • <sup id="m6ics"></sup>
      <tfoot id="m6ics"></tfoot>
      <sup id="m6ics"><noscript id="m6ics"></noscript></sup>