題目列表(包括答案和解析)
(本小題考查基本不等式的應(yīng)用)已知,
則的最小值是
A.2 B. C.4 D.5
建造一個(gè)容積為18 m3,深為2 m的長(zhǎng)方體無(wú)蓋水池,如果池底和池壁每平方米的造價(jià)分別為200元和150元,那么池的最低造價(jià)為_(kāi)_________.
本題考查均值不等式的應(yīng)用.
如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花園AMPN,要求B在AM上,D在AN上,且對(duì)角線MN過(guò)C點(diǎn),|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面積大于32平方米,則AN的長(zhǎng)應(yīng)在什么范圍內(nèi)?
(II)當(dāng)AN的長(zhǎng)度是多少時(shí),矩形AMPN的面積最?并求出最小面積.
(Ⅲ)若AN的長(zhǎng)度不少于6米,則當(dāng)AN的長(zhǎng)度是多少時(shí),矩形AMPN的面積最?并求出最小面積.
【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問(wèn)題和解決問(wèn)題的能力 第一問(wèn)要利用相似比得到結(jié)論。
(I)由SAMPN > 32 得 > 32 ,
∵x >2,∴,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN長(zhǎng)的取值范圍是(2,8/3)或(8,+)
第二問(wèn),
當(dāng)且僅當(dāng)
(3)令
∴當(dāng)x > 4,y′> 0,即函數(shù)y=在(4,+∞)上單調(diào)遞增,∴函數(shù)y=在[6,+∞]上也單調(diào)遞增.
∴當(dāng)x=6時(shí)y=取得最小值,即SAMPN取得最小值27(平方米).
(本小題考查基本不等式的應(yīng)用)已知,
則的最小值是
2 B. C.4 D.5
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com