題目列表(包括答案和解析)
(本小題滿分12分)請你設(shè)計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得ABCD四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形斜邊的兩個端點,設(shè)AE=FB=xcm.
(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.
(本小題滿分12分)如圖,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是邊長為1的正方形,側(cè)棱AA1=2。
(I)求證:C1D//平面ABB1A1;
(II)求直線BD1與平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D—A1C1—A的余弦值。
(本小題滿分12分)
如圖,在正四棱柱ABCD—A1B1C1D1中,AB=1,AA1=2,E為棱AA1上一點,且平面BDE。
(I)求直線BD1與平面BDE所成角的正弦值;
(II)求二面角C—BE—D的余弦值。
(本小題滿分12分)
如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,點E在CC1上,且平面BED
(Ⅰ)證明; C1E=3EC
|
(本小題滿分12分)
如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,點E在CC1上,且平面BED
(Ⅰ)證明; C1E=3EC
|
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com